Hybrid Markov Models Used for Path Prediction
Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | |
container_start_page | 374 |
container_title | |
container_volume | |
creator | Xue-gang Yu Yan-heng Liu Da Wei Min Ting |
description | Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN. |
doi_str_mv | 10.1109/ICCCN.2006.286304 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4067685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4067685</ieee_id><sourcerecordid>4067685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-8ebe0b15140ae9c6e403d7bba9ddbbb1608afac3a056df1db0aaf133125276b13</originalsourceid><addsrcrecordid>eNotjMtOwzAQAC0eEqH0AxAX_4DDrtfexEcUQVuphR7oubJjRwQKQU6E1L-nEsxlTjNC3CKUiODuV03TPJcagEtdM4E5E4VmqpQzBOfiGo02Bmyl-UIUp8AqDdZeifk4vsMJcgaBC6GWx5D7KDc-fww_cjPEdBjlbkxRdkOWWz-9yW1OsW-nfvi6EZedP4xp_u-Z2D09vjZLtX5ZrJqHtWq1pknVKSQIaNGAT67lZIBiFYJ3MYYQkKH2nW_Jg-XYYQzgfYdEqK2uOCDNxN3ft08p7b9z_-nzcW-AK64t_QJbFkRu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Markov Models Used for Path Prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xue-gang Yu ; Yan-heng Liu ; Da Wei ; Min Ting</creator><creatorcontrib>Xue-gang Yu ; Yan-heng Liu ; Da Wei ; Min Ting</creatorcontrib><description>Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.</description><identifier>ISSN: 1095-2055</identifier><identifier>ISBN: 1424405726</identifier><identifier>ISBN: 9781424405725</identifier><identifier>EISSN: 2637-9430</identifier><identifier>DOI: 10.1109/ICCCN.2006.286304</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computer science ; Educational institutions ; EM Algorithm ; Equations ; Hybrid ; Markov Model ; Predictive models ; Random variables ; Space technology ; State Space Expansion ; State-space methods ; Wireless LAN ; Wireless networks</subject><ispartof>Proceedings of 15th International Conference on Computer Communications and Networks, 2006, p.374-379</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-8ebe0b15140ae9c6e403d7bba9ddbbb1608afac3a056df1db0aaf133125276b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4067685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4067685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue-gang Yu</creatorcontrib><creatorcontrib>Yan-heng Liu</creatorcontrib><creatorcontrib>Da Wei</creatorcontrib><creatorcontrib>Min Ting</creatorcontrib><title>Hybrid Markov Models Used for Path Prediction</title><title>Proceedings of 15th International Conference on Computer Communications and Networks</title><addtitle>ICCCN</addtitle><description>Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.</description><subject>Accuracy</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>EM Algorithm</subject><subject>Equations</subject><subject>Hybrid</subject><subject>Markov Model</subject><subject>Predictive models</subject><subject>Random variables</subject><subject>Space technology</subject><subject>State Space Expansion</subject><subject>State-space methods</subject><subject>Wireless LAN</subject><subject>Wireless networks</subject><issn>1095-2055</issn><issn>2637-9430</issn><isbn>1424405726</isbn><isbn>9781424405725</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAQAC0eEqH0AxAX_4DDrtfexEcUQVuphR7oubJjRwQKQU6E1L-nEsxlTjNC3CKUiODuV03TPJcagEtdM4E5E4VmqpQzBOfiGo02Bmyl-UIUp8AqDdZeifk4vsMJcgaBC6GWx5D7KDc-fww_cjPEdBjlbkxRdkOWWz-9yW1OsW-nfvi6EZedP4xp_u-Z2D09vjZLtX5ZrJqHtWq1pknVKSQIaNGAT67lZIBiFYJ3MYYQkKH2nW_Jg-XYYQzgfYdEqK2uOCDNxN3ft08p7b9z_-nzcW-AK64t_QJbFkRu</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Xue-gang Yu</creator><creator>Yan-heng Liu</creator><creator>Da Wei</creator><creator>Min Ting</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Hybrid Markov Models Used for Path Prediction</title><author>Xue-gang Yu ; Yan-heng Liu ; Da Wei ; Min Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-8ebe0b15140ae9c6e403d7bba9ddbbb1608afac3a056df1db0aaf133125276b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>EM Algorithm</topic><topic>Equations</topic><topic>Hybrid</topic><topic>Markov Model</topic><topic>Predictive models</topic><topic>Random variables</topic><topic>Space technology</topic><topic>State Space Expansion</topic><topic>State-space methods</topic><topic>Wireless LAN</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue-gang Yu</creatorcontrib><creatorcontrib>Yan-heng Liu</creatorcontrib><creatorcontrib>Da Wei</creatorcontrib><creatorcontrib>Min Ting</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue-gang Yu</au><au>Yan-heng Liu</au><au>Da Wei</au><au>Min Ting</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Markov Models Used for Path Prediction</atitle><btitle>Proceedings of 15th International Conference on Computer Communications and Networks</btitle><stitle>ICCCN</stitle><date>2006-10</date><risdate>2006</risdate><spage>374</spage><epage>379</epage><pages>374-379</pages><issn>1095-2055</issn><eissn>2637-9430</eissn><isbn>1424405726</isbn><isbn>9781424405725</isbn><abstract>Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.</abstract><pub>IEEE</pub><doi>10.1109/ICCCN.2006.286304</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1095-2055 |
ispartof | Proceedings of 15th International Conference on Computer Communications and Networks, 2006, p.374-379 |
issn | 1095-2055 2637-9430 |
language | eng |
recordid | cdi_ieee_primary_4067685 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Computer science Educational institutions EM Algorithm Equations Hybrid Markov Model Predictive models Random variables Space technology State Space Expansion State-space methods Wireless LAN Wireless networks |
title | Hybrid Markov Models Used for Path Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Markov%20Models%20Used%20for%20Path%20Prediction&rft.btitle=Proceedings%20of%2015th%20International%20Conference%20on%20Computer%20Communications%20and%20Networks&rft.au=Xue-gang%20Yu&rft.date=2006-10&rft.spage=374&rft.epage=379&rft.pages=374-379&rft.issn=1095-2055&rft.eissn=2637-9430&rft.isbn=1424405726&rft.isbn_list=9781424405725&rft_id=info:doi/10.1109/ICCCN.2006.286304&rft_dat=%3Cieee_6IE%3E4067685%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4067685&rfr_iscdi=true |