Hybrid Markov Models Used for Path Prediction

Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xue-gang Yu, Yan-heng Liu, Da Wei, Min Ting
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue
container_start_page 374
container_title
container_volume
creator Xue-gang Yu
Yan-heng Liu
Da Wei
Min Ting
description Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.
doi_str_mv 10.1109/ICCCN.2006.286304
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4067685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4067685</ieee_id><sourcerecordid>4067685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-8ebe0b15140ae9c6e403d7bba9ddbbb1608afac3a056df1db0aaf133125276b13</originalsourceid><addsrcrecordid>eNotjMtOwzAQAC0eEqH0AxAX_4DDrtfexEcUQVuphR7oubJjRwQKQU6E1L-nEsxlTjNC3CKUiODuV03TPJcagEtdM4E5E4VmqpQzBOfiGo02Bmyl-UIUp8AqDdZeifk4vsMJcgaBC6GWx5D7KDc-fww_cjPEdBjlbkxRdkOWWz-9yW1OsW-nfvi6EZedP4xp_u-Z2D09vjZLtX5ZrJqHtWq1pknVKSQIaNGAT67lZIBiFYJ3MYYQkKH2nW_Jg-XYYQzgfYdEqK2uOCDNxN3ft08p7b9z_-nzcW-AK64t_QJbFkRu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Markov Models Used for Path Prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xue-gang Yu ; Yan-heng Liu ; Da Wei ; Min Ting</creator><creatorcontrib>Xue-gang Yu ; Yan-heng Liu ; Da Wei ; Min Ting</creatorcontrib><description>Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.</description><identifier>ISSN: 1095-2055</identifier><identifier>ISBN: 1424405726</identifier><identifier>ISBN: 9781424405725</identifier><identifier>EISSN: 2637-9430</identifier><identifier>DOI: 10.1109/ICCCN.2006.286304</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computer science ; Educational institutions ; EM Algorithm ; Equations ; Hybrid ; Markov Model ; Predictive models ; Random variables ; Space technology ; State Space Expansion ; State-space methods ; Wireless LAN ; Wireless networks</subject><ispartof>Proceedings of 15th International Conference on Computer Communications and Networks, 2006, p.374-379</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-8ebe0b15140ae9c6e403d7bba9ddbbb1608afac3a056df1db0aaf133125276b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4067685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4067685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue-gang Yu</creatorcontrib><creatorcontrib>Yan-heng Liu</creatorcontrib><creatorcontrib>Da Wei</creatorcontrib><creatorcontrib>Min Ting</creatorcontrib><title>Hybrid Markov Models Used for Path Prediction</title><title>Proceedings of 15th International Conference on Computer Communications and Networks</title><addtitle>ICCCN</addtitle><description>Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.</description><subject>Accuracy</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>EM Algorithm</subject><subject>Equations</subject><subject>Hybrid</subject><subject>Markov Model</subject><subject>Predictive models</subject><subject>Random variables</subject><subject>Space technology</subject><subject>State Space Expansion</subject><subject>State-space methods</subject><subject>Wireless LAN</subject><subject>Wireless networks</subject><issn>1095-2055</issn><issn>2637-9430</issn><isbn>1424405726</isbn><isbn>9781424405725</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAQAC0eEqH0AxAX_4DDrtfexEcUQVuphR7oubJjRwQKQU6E1L-nEsxlTjNC3CKUiODuV03TPJcagEtdM4E5E4VmqpQzBOfiGo02Bmyl-UIUp8AqDdZeifk4vsMJcgaBC6GWx5D7KDc-fww_cjPEdBjlbkxRdkOWWz-9yW1OsW-nfvi6EZedP4xp_u-Z2D09vjZLtX5ZrJqHtWq1pknVKSQIaNGAT67lZIBiFYJ3MYYQkKH2nW_Jg-XYYQzgfYdEqK2uOCDNxN3ft08p7b9z_-nzcW-AK64t_QJbFkRu</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Xue-gang Yu</creator><creator>Yan-heng Liu</creator><creator>Da Wei</creator><creator>Min Ting</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Hybrid Markov Models Used for Path Prediction</title><author>Xue-gang Yu ; Yan-heng Liu ; Da Wei ; Min Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-8ebe0b15140ae9c6e403d7bba9ddbbb1608afac3a056df1db0aaf133125276b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>EM Algorithm</topic><topic>Equations</topic><topic>Hybrid</topic><topic>Markov Model</topic><topic>Predictive models</topic><topic>Random variables</topic><topic>Space technology</topic><topic>State Space Expansion</topic><topic>State-space methods</topic><topic>Wireless LAN</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue-gang Yu</creatorcontrib><creatorcontrib>Yan-heng Liu</creatorcontrib><creatorcontrib>Da Wei</creatorcontrib><creatorcontrib>Min Ting</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue-gang Yu</au><au>Yan-heng Liu</au><au>Da Wei</au><au>Min Ting</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Markov Models Used for Path Prediction</atitle><btitle>Proceedings of 15th International Conference on Computer Communications and Networks</btitle><stitle>ICCCN</stitle><date>2006-10</date><risdate>2006</risdate><spage>374</spage><epage>379</epage><pages>374-379</pages><issn>1095-2055</issn><eissn>2637-9430</eissn><isbn>1424405726</isbn><isbn>9781424405725</isbn><abstract>Path prediction is an important issue in QoS of wireless networks. The paper points out problems in some existed path prediction schemes, especially the state space expansion problem in order-k Markov predictor. And it firstly proposes a step-k Markov model and validates its feasibility. Secondly, a hybrid Markov predictor model and its improved models are put forward based on the step-k Markov model. Because of the order-2 Markov model's best performance in order-k Markov models, the Hybrid Markov model takes the order-2 Markov model as its target. The state space's complexity of the Hybrid Markov Model is 0(N) while the order-2 Markov model is O(N 2 ). And the memory demand of the hybrid Markov model is O(N 2 ) while Order-2 Markov model is O(N 3 ). Finally, it is proved that the hybrid Markov predictor can get close performance with order-2 Markov predictor at much lower expense by conditional entropy analysis and user mobility data analysis. Also it can alleviate the zero probability problem in order-k Markov model to some extent. The hybrid Markov predictor is more practical than order-k Markov predictors under WLAN.</abstract><pub>IEEE</pub><doi>10.1109/ICCCN.2006.286304</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-2055
ispartof Proceedings of 15th International Conference on Computer Communications and Networks, 2006, p.374-379
issn 1095-2055
2637-9430
language eng
recordid cdi_ieee_primary_4067685
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Computer science
Educational institutions
EM Algorithm
Equations
Hybrid
Markov Model
Predictive models
Random variables
Space technology
State Space Expansion
State-space methods
Wireless LAN
Wireless networks
title Hybrid Markov Models Used for Path Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Markov%20Models%20Used%20for%20Path%20Prediction&rft.btitle=Proceedings%20of%2015th%20International%20Conference%20on%20Computer%20Communications%20and%20Networks&rft.au=Xue-gang%20Yu&rft.date=2006-10&rft.spage=374&rft.epage=379&rft.pages=374-379&rft.issn=1095-2055&rft.eissn=2637-9430&rft.isbn=1424405726&rft.isbn_list=9781424405725&rft_id=info:doi/10.1109/ICCCN.2006.286304&rft_dat=%3Cieee_6IE%3E4067685%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4067685&rfr_iscdi=true