Multimode Transverse Resonance of Multilayer Crystal Slabs

An effective tool for accurate analysis and design of a wide range of optical devices involving three-dimensional (3-D) photonic crystals is provided. The advantages of using transverse resonance in conjunction with full-wave numerical solvers in order to characterize this kind of structures are hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2006-12, Vol.24 (12), p.5025-5030
Hauptverfasser: Mencarelli, D., Rozzi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5030
container_issue 12
container_start_page 5025
container_title Journal of lightwave technology
container_volume 24
creator Mencarelli, D.
Rozzi, T.
description An effective tool for accurate analysis and design of a wide range of optical devices involving three-dimensional (3-D) photonic crystals is provided. The advantages of using transverse resonance in conjunction with full-wave numerical solvers in order to characterize this kind of structures are highlighted. This paper focuses on the study of a practical example of an asymmetric crystal slab and shows the features of the proposed method in terms of accuracy and flexibility. The concept of Floquet modes of a periodic crystal is applied, and a multimode transverse equivalent network is developed in the aim of obtaining the resonant 3-D modes of the slab containing the photonic crystal
doi_str_mv 10.1109/JLT.2006.884999
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4063419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4063419</ieee_id><sourcerecordid>2344158461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-433a369fc5ac2010676da4e50070b4453141f943530fdaf1c8b18712798975f63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKtnD14WQfSy7eQ78SbFTyqC1vOSpgls2e7WZFfovzd1i4IHT3OYNw_mIXSKYYQx6PHTdDYiAGKkFNNa76EB5lzlhGC6jwYgKc2VJOwQHcW4BMCMKTlA189d1ZarZuGyWTB1_HQhuuzVxaY2tXVZ47NvojIbF7JJ2MTWVNlbZebxGB14U0V3sptD9H53O5s85NOX-8fJzTS3VNE2Z5QaKrS33FgCGIQUC8McB5AwZ4xTzLDXjHIKfmE8tmqOlcREaqUl94IO0WXvXYfmo3OxLVZltK6qTO2aLhZKCwJESZnIq39JDIRoIEC30vM_6LLpQp3-KJQQAFwJnKBxD9nQxBicL9ahXJmwSaZiG71I0Ytt9KKPni4udloTral8SmrL-HuWKMmBJe6s50rn3M-agaAMa_oF6v6HKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866005861</pqid></control><display><type>article</type><title>Multimode Transverse Resonance of Multilayer Crystal Slabs</title><source>IEEE Electronic Library (IEL)</source><creator>Mencarelli, D. ; Rozzi, T.</creator><creatorcontrib>Mencarelli, D. ; Rozzi, T.</creatorcontrib><description>An effective tool for accurate analysis and design of a wide range of optical devices involving three-dimensional (3-D) photonic crystals is provided. The advantages of using transverse resonance in conjunction with full-wave numerical solvers in order to characterize this kind of structures are highlighted. This paper focuses on the study of a practical example of an asymmetric crystal slab and shows the features of the proposed method in terms of accuracy and flexibility. The concept of Floquet modes of a periodic crystal is applied, and a multimode transverse equivalent network is developed in the aim of obtaining the resonant 3-D modes of the slab containing the photonic crystal</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2006.884999</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymmetry ; Crystals ; Dielectrics ; Eigenvalues and eigenfunctions ; Electronics ; Equivalence ; Exact sciences and technology ; Flexibility ; Full-wave solvers ; Fundamental areas of phenomenology (including applications) ; Lattices ; Materials ; Multilayers ; Nonhomogeneous media ; Optical design ; Optical materials ; Optical resonators ; Optics ; periodic boundary conditions ; Photonic band gap ; photonic band gap crystals ; Photonic bandgap materials ; Photonic crystals ; Physics ; Resonance ; Slabs ; Solvers ; Three dimensional ; transverse resonance</subject><ispartof>Journal of lightwave technology, 2006-12, Vol.24 (12), p.5025-5030</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-433a369fc5ac2010676da4e50070b4453141f943530fdaf1c8b18712798975f63</citedby><cites>FETCH-LOGICAL-c383t-433a369fc5ac2010676da4e50070b4453141f943530fdaf1c8b18712798975f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4063419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4063419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18497504$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mencarelli, D.</creatorcontrib><creatorcontrib>Rozzi, T.</creatorcontrib><title>Multimode Transverse Resonance of Multilayer Crystal Slabs</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>An effective tool for accurate analysis and design of a wide range of optical devices involving three-dimensional (3-D) photonic crystals is provided. The advantages of using transverse resonance in conjunction with full-wave numerical solvers in order to characterize this kind of structures are highlighted. This paper focuses on the study of a practical example of an asymmetric crystal slab and shows the features of the proposed method in terms of accuracy and flexibility. The concept of Floquet modes of a periodic crystal is applied, and a multimode transverse equivalent network is developed in the aim of obtaining the resonant 3-D modes of the slab containing the photonic crystal</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Crystals</subject><subject>Dielectrics</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electronics</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Flexibility</subject><subject>Full-wave solvers</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattices</subject><subject>Materials</subject><subject>Multilayers</subject><subject>Nonhomogeneous media</subject><subject>Optical design</subject><subject>Optical materials</subject><subject>Optical resonators</subject><subject>Optics</subject><subject>periodic boundary conditions</subject><subject>Photonic band gap</subject><subject>photonic band gap crystals</subject><subject>Photonic bandgap materials</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Resonance</subject><subject>Slabs</subject><subject>Solvers</subject><subject>Three dimensional</subject><subject>transverse resonance</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQQIMoWKtnD14WQfSy7eQ78SbFTyqC1vOSpgls2e7WZFfovzd1i4IHT3OYNw_mIXSKYYQx6PHTdDYiAGKkFNNa76EB5lzlhGC6jwYgKc2VJOwQHcW4BMCMKTlA189d1ZarZuGyWTB1_HQhuuzVxaY2tXVZ47NvojIbF7JJ2MTWVNlbZebxGB14U0V3sptD9H53O5s85NOX-8fJzTS3VNE2Z5QaKrS33FgCGIQUC8McB5AwZ4xTzLDXjHIKfmE8tmqOlcREaqUl94IO0WXvXYfmo3OxLVZltK6qTO2aLhZKCwJESZnIq39JDIRoIEC30vM_6LLpQp3-KJQQAFwJnKBxD9nQxBicL9ahXJmwSaZiG71I0Ytt9KKPni4udloTral8SmrL-HuWKMmBJe6s50rn3M-agaAMa_oF6v6HKA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Mencarelli, D.</creator><creator>Rozzi, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20061201</creationdate><title>Multimode Transverse Resonance of Multilayer Crystal Slabs</title><author>Mencarelli, D. ; Rozzi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-433a369fc5ac2010676da4e50070b4453141f943530fdaf1c8b18712798975f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Crystals</topic><topic>Dielectrics</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electronics</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Flexibility</topic><topic>Full-wave solvers</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattices</topic><topic>Materials</topic><topic>Multilayers</topic><topic>Nonhomogeneous media</topic><topic>Optical design</topic><topic>Optical materials</topic><topic>Optical resonators</topic><topic>Optics</topic><topic>periodic boundary conditions</topic><topic>Photonic band gap</topic><topic>photonic band gap crystals</topic><topic>Photonic bandgap materials</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Resonance</topic><topic>Slabs</topic><topic>Solvers</topic><topic>Three dimensional</topic><topic>transverse resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mencarelli, D.</creatorcontrib><creatorcontrib>Rozzi, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mencarelli, D.</au><au>Rozzi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimode Transverse Resonance of Multilayer Crystal Slabs</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>24</volume><issue>12</issue><spage>5025</spage><epage>5030</epage><pages>5025-5030</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>An effective tool for accurate analysis and design of a wide range of optical devices involving three-dimensional (3-D) photonic crystals is provided. The advantages of using transverse resonance in conjunction with full-wave numerical solvers in order to characterize this kind of structures are highlighted. This paper focuses on the study of a practical example of an asymmetric crystal slab and shows the features of the proposed method in terms of accuracy and flexibility. The concept of Floquet modes of a periodic crystal is applied, and a multimode transverse equivalent network is developed in the aim of obtaining the resonant 3-D modes of the slab containing the photonic crystal</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2006.884999</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2006-12, Vol.24 (12), p.5025-5030
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_4063419
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymmetry
Crystals
Dielectrics
Eigenvalues and eigenfunctions
Electronics
Equivalence
Exact sciences and technology
Flexibility
Full-wave solvers
Fundamental areas of phenomenology (including applications)
Lattices
Materials
Multilayers
Nonhomogeneous media
Optical design
Optical materials
Optical resonators
Optics
periodic boundary conditions
Photonic band gap
photonic band gap crystals
Photonic bandgap materials
Photonic crystals
Physics
Resonance
Slabs
Solvers
Three dimensional
transverse resonance
title Multimode Transverse Resonance of Multilayer Crystal Slabs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimode%20Transverse%20Resonance%20of%20Multilayer%20Crystal%20Slabs&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Mencarelli,%20D.&rft.date=2006-12-01&rft.volume=24&rft.issue=12&rft.spage=5025&rft.epage=5030&rft.pages=5025-5030&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2006.884999&rft_dat=%3Cproquest_RIE%3E2344158461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866005861&rft_id=info:pmid/&rft_ieee_id=4063419&rfr_iscdi=true