Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls
In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity fe...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 988 |
---|---|
container_issue | |
container_start_page | 983 |
container_title | |
container_volume | |
creator | Yan, A. D. Genqi, B. X. |
description | In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution. |
doi_str_mv | 10.1109/CHICC.2006.280841 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4060675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4060675</ieee_id><sourcerecordid>4060675</sourcerecordid><originalsourceid>FETCH-ieee_primary_40606753</originalsourceid><addsrcrecordid>eNp9istOwzAQRae0SKSQD0Bs_ANJZ9zgxxarqEisaPaVK1zVkNhRbAT5e4rEuqt7dM4FuCesiVCvzPbFmJojiporVA3NoNRSSX02Qiulr6DgJKjimss5LKUilFIhpwUUpNdNRVKoGyhT-kBE0kI2nBfwtvkZYnAhe9uxXbYH3_k8sXhklu2mlF3_x68-ODuy1vcxnVz4jKydBse-fT6xp_gV3u04MRNDHmOX7uD6aLvkyv-9hYfnTWu2lXfO7YfR9-f3vkGBQj6uL9dfk61F-w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yan, A. D. ; Genqi, B. X.</creator><creatorcontrib>Yan, A. D. ; Genqi, B. X.</creatorcontrib><description>In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 7810778021</identifier><identifier>ISBN: 9787810778022</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9787900669889</identifier><identifier>EISBN: 7900669884</identifier><identifier>DOI: 10.1109/CHICC.2006.280841</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Boundary feedback control ; Closed loop systems ; Control systems ; Equations ; exponential stability ; Feedback control ; IEEE catalog ; Kinetic theory ; linear Timoshenko type system ; Mathematics ; Riesz basis ; Solids</subject><ispartof>2006 Chinese Control Conference, 2006, p.983-988</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4060675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4060675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, A. D.</creatorcontrib><creatorcontrib>Genqi, B. X.</creatorcontrib><title>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</title><title>2006 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.</description><subject>Asymptotic stability</subject><subject>Boundary feedback control</subject><subject>Closed loop systems</subject><subject>Control systems</subject><subject>Equations</subject><subject>exponential stability</subject><subject>Feedback control</subject><subject>IEEE catalog</subject><subject>Kinetic theory</subject><subject>linear Timoshenko type system</subject><subject>Mathematics</subject><subject>Riesz basis</subject><subject>Solids</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>7810778021</isbn><isbn>9787810778022</isbn><isbn>9787900669889</isbn><isbn>7900669884</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9istOwzAQRae0SKSQD0Bs_ANJZ9zgxxarqEisaPaVK1zVkNhRbAT5e4rEuqt7dM4FuCesiVCvzPbFmJojiporVA3NoNRSSX02Qiulr6DgJKjimss5LKUilFIhpwUUpNdNRVKoGyhT-kBE0kI2nBfwtvkZYnAhe9uxXbYH3_k8sXhklu2mlF3_x68-ODuy1vcxnVz4jKydBse-fT6xp_gV3u04MRNDHmOX7uD6aLvkyv-9hYfnTWu2lXfO7YfR9-f3vkGBQj6uL9dfk61F-w</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Yan, A. D.</creator><creator>Genqi, B. X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</title><author>Yan, A. D. ; Genqi, B. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_40606753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Asymptotic stability</topic><topic>Boundary feedback control</topic><topic>Closed loop systems</topic><topic>Control systems</topic><topic>Equations</topic><topic>exponential stability</topic><topic>Feedback control</topic><topic>IEEE catalog</topic><topic>Kinetic theory</topic><topic>linear Timoshenko type system</topic><topic>Mathematics</topic><topic>Riesz basis</topic><topic>Solids</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, A. D.</creatorcontrib><creatorcontrib>Genqi, B. X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, A. D.</au><au>Genqi, B. X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</atitle><btitle>2006 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2006-08</date><risdate>2006</risdate><spage>983</spage><epage>988</epage><pages>983-988</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>7810778021</isbn><isbn>9787810778022</isbn><eisbn>9787900669889</eisbn><eisbn>7900669884</eisbn><abstract>In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.280841</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | 2006 Chinese Control Conference, 2006, p.983-988 |
issn | 1934-1768 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_4060675 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asymptotic stability Boundary feedback control Closed loop systems Control systems Equations exponential stability Feedback control IEEE catalog Kinetic theory linear Timoshenko type system Mathematics Riesz basis Solids |
title | Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exponential%20Stability%20of%20a%20System%20of%20Linear%20Timoshenko%20Type%20with%20Boundary%20Controls&rft.btitle=2006%20Chinese%20Control%20Conference&rft.au=Yan,%20A.%20D.&rft.date=2006-08&rft.spage=983&rft.epage=988&rft.pages=983-988&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=7810778021&rft.isbn_list=9787810778022&rft_id=info:doi/10.1109/CHICC.2006.280841&rft_dat=%3Cieee_6IE%3E4060675%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9787900669889&rft.eisbn_list=7900669884&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4060675&rfr_iscdi=true |