Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls

In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yan, A. D., Genqi, B. X.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue
container_start_page 983
container_title
container_volume
creator Yan, A. D.
Genqi, B. X.
description In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.
doi_str_mv 10.1109/CHICC.2006.280841
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4060675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4060675</ieee_id><sourcerecordid>4060675</sourcerecordid><originalsourceid>FETCH-ieee_primary_40606753</originalsourceid><addsrcrecordid>eNp9istOwzAQRae0SKSQD0Bs_ANJZ9zgxxarqEisaPaVK1zVkNhRbAT5e4rEuqt7dM4FuCesiVCvzPbFmJojiporVA3NoNRSSX02Qiulr6DgJKjimss5LKUilFIhpwUUpNdNRVKoGyhT-kBE0kI2nBfwtvkZYnAhe9uxXbYH3_k8sXhklu2mlF3_x68-ODuy1vcxnVz4jKydBse-fT6xp_gV3u04MRNDHmOX7uD6aLvkyv-9hYfnTWu2lXfO7YfR9-f3vkGBQj6uL9dfk61F-w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yan, A. D. ; Genqi, B. X.</creator><creatorcontrib>Yan, A. D. ; Genqi, B. X.</creatorcontrib><description>In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 7810778021</identifier><identifier>ISBN: 9787810778022</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9787900669889</identifier><identifier>EISBN: 7900669884</identifier><identifier>DOI: 10.1109/CHICC.2006.280841</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Boundary feedback control ; Closed loop systems ; Control systems ; Equations ; exponential stability ; Feedback control ; IEEE catalog ; Kinetic theory ; linear Timoshenko type system ; Mathematics ; Riesz basis ; Solids</subject><ispartof>2006 Chinese Control Conference, 2006, p.983-988</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4060675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4060675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, A. D.</creatorcontrib><creatorcontrib>Genqi, B. X.</creatorcontrib><title>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</title><title>2006 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.</description><subject>Asymptotic stability</subject><subject>Boundary feedback control</subject><subject>Closed loop systems</subject><subject>Control systems</subject><subject>Equations</subject><subject>exponential stability</subject><subject>Feedback control</subject><subject>IEEE catalog</subject><subject>Kinetic theory</subject><subject>linear Timoshenko type system</subject><subject>Mathematics</subject><subject>Riesz basis</subject><subject>Solids</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>7810778021</isbn><isbn>9787810778022</isbn><isbn>9787900669889</isbn><isbn>7900669884</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9istOwzAQRae0SKSQD0Bs_ANJZ9zgxxarqEisaPaVK1zVkNhRbAT5e4rEuqt7dM4FuCesiVCvzPbFmJojiporVA3NoNRSSX02Qiulr6DgJKjimss5LKUilFIhpwUUpNdNRVKoGyhT-kBE0kI2nBfwtvkZYnAhe9uxXbYH3_k8sXhklu2mlF3_x68-ODuy1vcxnVz4jKydBse-fT6xp_gV3u04MRNDHmOX7uD6aLvkyv-9hYfnTWu2lXfO7YfR9-f3vkGBQj6uL9dfk61F-w</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Yan, A. D.</creator><creator>Genqi, B. X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</title><author>Yan, A. D. ; Genqi, B. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_40606753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Asymptotic stability</topic><topic>Boundary feedback control</topic><topic>Closed loop systems</topic><topic>Control systems</topic><topic>Equations</topic><topic>exponential stability</topic><topic>Feedback control</topic><topic>IEEE catalog</topic><topic>Kinetic theory</topic><topic>linear Timoshenko type system</topic><topic>Mathematics</topic><topic>Riesz basis</topic><topic>Solids</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, A. D.</creatorcontrib><creatorcontrib>Genqi, B. X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, A. D.</au><au>Genqi, B. X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls</atitle><btitle>2006 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2006-08</date><risdate>2006</risdate><spage>983</spage><epage>988</epage><pages>983-988</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>7810778021</isbn><isbn>9787810778022</isbn><eisbn>9787900669889</eisbn><eisbn>7900669884</eisbn><abstract>In the present paper we consider the stabilization problem of porous elastic solids in real world. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. In this paper we act boundary velocity feedback controls on the system with both ends free. Then we discuss its well-posed-ness and obtain the exponential stability of the closed loop system by use of the Riesz basis property and spectral distribution.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.280841</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof 2006 Chinese Control Conference, 2006, p.983-988
issn 1934-1768
2161-2927
language eng
recordid cdi_ieee_primary_4060675
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
Boundary feedback control
Closed loop systems
Control systems
Equations
exponential stability
Feedback control
IEEE catalog
Kinetic theory
linear Timoshenko type system
Mathematics
Riesz basis
Solids
title Exponential Stability of a System of Linear Timoshenko Type with Boundary Controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exponential%20Stability%20of%20a%20System%20of%20Linear%20Timoshenko%20Type%20with%20Boundary%20Controls&rft.btitle=2006%20Chinese%20Control%20Conference&rft.au=Yan,%20A.%20D.&rft.date=2006-08&rft.spage=983&rft.epage=988&rft.pages=983-988&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=7810778021&rft.isbn_list=9787810778022&rft_id=info:doi/10.1109/CHICC.2006.280841&rft_dat=%3Cieee_6IE%3E4060675%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9787900669889&rft.eisbn_list=7900669884&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4060675&rfr_iscdi=true