Trajectory and Spline Generation for All-Wheel Steering Mobile Robots

We present a method for trajectory generation for all-wheel steering mobile robots which can account for rough terrain and predictable vehicle dynamics and apply it to the problem of generating optimal motion splines. There has been little work in trajectory generation for vehicles with all-wheel st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Howard, T.M., Kelly, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for trajectory generation for all-wheel steering mobile robots which can account for rough terrain and predictable vehicle dynamics and apply it to the problem of generating optimal motion splines. There has been little work in trajectory generation for vehicles with all-wheel steering capability compared to the Ackermann, differential-drive, or omnidirectional mobility system models. The presented method linearizes and inverts forward models of propulsion, suspension, and motion to minimize boundary state error given a parameterized set of controls. Our method for generating efficient motion splines between a series of state boundary constraints optimizes the free path heading boundary constraint while meeting position and orientation state constraints. We demonstrate this algorithm on the Rocky 8 rover platform, where parameterized linear velocity, curvature, and path heading controls are generated which satisfy position, orientation, and path heading constraints in rough terrain
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2006.282358