Metric SLAM in Home Environment with Visual Objects and Sonar Features

To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jinwoo Choi, Sunghwan Ahn, Minyong Choi, Wan Kyun Chung
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4053
container_issue
container_start_page 4048
container_title
container_volume
creator Jinwoo Choi
Sunghwan Ahn
Minyong Choi
Wan Kyun Chung
description To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles
doi_str_mv 10.1109/IROS.2006.281866
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4059042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4059042</ieee_id><sourcerecordid>4059042</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c42bec06dd5e7592c795dfddfcda6b6641f34479f8fc62fd6179a0a0a1e244c63</originalsourceid><addsrcrecordid>eNpVj0tLxDAYReMLHMbuBTf5A61JmqTJchjmBR0KVt0OafIFM0xbaTOK_96CInjP4i4OXLgI3VOSUUr04-6pqjNGiMyYokrKC5ToQlHOOCdMaHGJZoyKPCWTu_rnlLr-c0LdomQcj2RKrgWnaobWe4hDsLguF3scOrztW8Cr7iMMfddCF_FniG_4NYxnc8JVcwQbR2w6h-u-MwNeg4nnAcY7dOPNaYTkt-foZb16Xm7TstrslosyDbQQMbWcNWCJdE5AITSzhRbOO-etM7KRklOfc15or7yVzDtJC23IBIXpjpX5HD387AYAOLwPoTXD14EToQln-TdEzFCG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metric SLAM in Home Environment with Visual Objects and Sonar Features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jinwoo Choi ; Sunghwan Ahn ; Minyong Choi ; Wan Kyun Chung</creator><creatorcontrib>Jinwoo Choi ; Sunghwan Ahn ; Minyong Choi ; Wan Kyun Chung</creatorcontrib><description>To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424402588</identifier><identifier>ISBN: 1424402581</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424402595</identifier><identifier>EISBN: 142440259X</identifier><identifier>DOI: 10.1109/IROS.2006.281866</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature detection ; Frequency ; Intelligent robots ; Intelligent sensors ; Mobile robot ; Mobile robots ; Object recognition ; Robustness ; Sensor fusion ; Simultaneous localization and mapping ; SLAM ; Sonar detection ; Sonar features ; Sonar measurements ; Uncertainty ; Visual objects</subject><ispartof>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.4048-4053</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4059042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4059042$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinwoo Choi</creatorcontrib><creatorcontrib>Sunghwan Ahn</creatorcontrib><creatorcontrib>Minyong Choi</creatorcontrib><creatorcontrib>Wan Kyun Chung</creatorcontrib><title>Metric SLAM in Home Environment with Visual Objects and Sonar Features</title><title>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles</description><subject>Feature detection</subject><subject>Frequency</subject><subject>Intelligent robots</subject><subject>Intelligent sensors</subject><subject>Mobile robot</subject><subject>Mobile robots</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Sonar detection</subject><subject>Sonar features</subject><subject>Sonar measurements</subject><subject>Uncertainty</subject><subject>Visual objects</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424402588</isbn><isbn>1424402581</isbn><isbn>9781424402595</isbn><isbn>142440259X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj0tLxDAYReMLHMbuBTf5A61JmqTJchjmBR0KVt0OafIFM0xbaTOK_96CInjP4i4OXLgI3VOSUUr04-6pqjNGiMyYokrKC5ToQlHOOCdMaHGJZoyKPCWTu_rnlLr-c0LdomQcj2RKrgWnaobWe4hDsLguF3scOrztW8Cr7iMMfddCF_FniG_4NYxnc8JVcwQbR2w6h-u-MwNeg4nnAcY7dOPNaYTkt-foZb16Xm7TstrslosyDbQQMbWcNWCJdE5AITSzhRbOO-etM7KRklOfc15or7yVzDtJC23IBIXpjpX5HD387AYAOLwPoTXD14EToQln-TdEzFCG</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Jinwoo Choi</creator><creator>Sunghwan Ahn</creator><creator>Minyong Choi</creator><creator>Wan Kyun Chung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Metric SLAM in Home Environment with Visual Objects and Sonar Features</title><author>Jinwoo Choi ; Sunghwan Ahn ; Minyong Choi ; Wan Kyun Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c42bec06dd5e7592c795dfddfcda6b6641f34479f8fc62fd6179a0a0a1e244c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Feature detection</topic><topic>Frequency</topic><topic>Intelligent robots</topic><topic>Intelligent sensors</topic><topic>Mobile robot</topic><topic>Mobile robots</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Sonar detection</topic><topic>Sonar features</topic><topic>Sonar measurements</topic><topic>Uncertainty</topic><topic>Visual objects</topic><toplevel>online_resources</toplevel><creatorcontrib>Jinwoo Choi</creatorcontrib><creatorcontrib>Sunghwan Ahn</creatorcontrib><creatorcontrib>Minyong Choi</creatorcontrib><creatorcontrib>Wan Kyun Chung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinwoo Choi</au><au>Sunghwan Ahn</au><au>Minyong Choi</au><au>Wan Kyun Chung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metric SLAM in Home Environment with Visual Objects and Sonar Features</atitle><btitle>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2006-10</date><risdate>2006</risdate><spage>4048</spage><epage>4053</epage><pages>4048-4053</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424402588</isbn><isbn>1424402581</isbn><eisbn>9781424402595</eisbn><eisbn>142440259X</eisbn><abstract>To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles</abstract><pub>IEEE</pub><doi>10.1109/IROS.2006.281866</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.4048-4053
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_4059042
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature detection
Frequency
Intelligent robots
Intelligent sensors
Mobile robot
Mobile robots
Object recognition
Robustness
Sensor fusion
Simultaneous localization and mapping
SLAM
Sonar detection
Sonar features
Sonar measurements
Uncertainty
Visual objects
title Metric SLAM in Home Environment with Visual Objects and Sonar Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metric%20SLAM%20in%20Home%20Environment%20with%20Visual%20Objects%20and%20Sonar%20Features&rft.btitle=2006%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Jinwoo%20Choi&rft.date=2006-10&rft.spage=4048&rft.epage=4053&rft.pages=4048-4053&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424402588&rft.isbn_list=1424402581&rft_id=info:doi/10.1109/IROS.2006.281866&rft_dat=%3Cieee_6IE%3E4059042%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424402595&rft.eisbn_list=142440259X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4059042&rfr_iscdi=true