Metric SLAM in Home Environment with Visual Objects and Sonar Features
To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can r...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4053 |
---|---|
container_issue | |
container_start_page | 4048 |
container_title | |
container_volume | |
creator | Jinwoo Choi Sunghwan Ahn Minyong Choi Wan Kyun Chung |
description | To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles |
doi_str_mv | 10.1109/IROS.2006.281866 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4059042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4059042</ieee_id><sourcerecordid>4059042</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c42bec06dd5e7592c795dfddfcda6b6641f34479f8fc62fd6179a0a0a1e244c63</originalsourceid><addsrcrecordid>eNpVj0tLxDAYReMLHMbuBTf5A61JmqTJchjmBR0KVt0OafIFM0xbaTOK_96CInjP4i4OXLgI3VOSUUr04-6pqjNGiMyYokrKC5ToQlHOOCdMaHGJZoyKPCWTu_rnlLr-c0LdomQcj2RKrgWnaobWe4hDsLguF3scOrztW8Cr7iMMfddCF_FniG_4NYxnc8JVcwQbR2w6h-u-MwNeg4nnAcY7dOPNaYTkt-foZb16Xm7TstrslosyDbQQMbWcNWCJdE5AITSzhRbOO-etM7KRklOfc15or7yVzDtJC23IBIXpjpX5HD387AYAOLwPoTXD14EToQln-TdEzFCG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metric SLAM in Home Environment with Visual Objects and Sonar Features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jinwoo Choi ; Sunghwan Ahn ; Minyong Choi ; Wan Kyun Chung</creator><creatorcontrib>Jinwoo Choi ; Sunghwan Ahn ; Minyong Choi ; Wan Kyun Chung</creatorcontrib><description>To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424402588</identifier><identifier>ISBN: 1424402581</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424402595</identifier><identifier>EISBN: 142440259X</identifier><identifier>DOI: 10.1109/IROS.2006.281866</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature detection ; Frequency ; Intelligent robots ; Intelligent sensors ; Mobile robot ; Mobile robots ; Object recognition ; Robustness ; Sensor fusion ; Simultaneous localization and mapping ; SLAM ; Sonar detection ; Sonar features ; Sonar measurements ; Uncertainty ; Visual objects</subject><ispartof>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.4048-4053</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4059042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4059042$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinwoo Choi</creatorcontrib><creatorcontrib>Sunghwan Ahn</creatorcontrib><creatorcontrib>Minyong Choi</creatorcontrib><creatorcontrib>Wan Kyun Chung</creatorcontrib><title>Metric SLAM in Home Environment with Visual Objects and Sonar Features</title><title>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles</description><subject>Feature detection</subject><subject>Frequency</subject><subject>Intelligent robots</subject><subject>Intelligent sensors</subject><subject>Mobile robot</subject><subject>Mobile robots</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Sonar detection</subject><subject>Sonar features</subject><subject>Sonar measurements</subject><subject>Uncertainty</subject><subject>Visual objects</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424402588</isbn><isbn>1424402581</isbn><isbn>9781424402595</isbn><isbn>142440259X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj0tLxDAYReMLHMbuBTf5A61JmqTJchjmBR0KVt0OafIFM0xbaTOK_96CInjP4i4OXLgI3VOSUUr04-6pqjNGiMyYokrKC5ToQlHOOCdMaHGJZoyKPCWTu_rnlLr-c0LdomQcj2RKrgWnaobWe4hDsLguF3scOrztW8Cr7iMMfddCF_FniG_4NYxnc8JVcwQbR2w6h-u-MwNeg4nnAcY7dOPNaYTkt-foZb16Xm7TstrslosyDbQQMbWcNWCJdE5AITSzhRbOO-etM7KRklOfc15or7yVzDtJC23IBIXpjpX5HD387AYAOLwPoTXD14EToQln-TdEzFCG</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Jinwoo Choi</creator><creator>Sunghwan Ahn</creator><creator>Minyong Choi</creator><creator>Wan Kyun Chung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Metric SLAM in Home Environment with Visual Objects and Sonar Features</title><author>Jinwoo Choi ; Sunghwan Ahn ; Minyong Choi ; Wan Kyun Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c42bec06dd5e7592c795dfddfcda6b6641f34479f8fc62fd6179a0a0a1e244c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Feature detection</topic><topic>Frequency</topic><topic>Intelligent robots</topic><topic>Intelligent sensors</topic><topic>Mobile robot</topic><topic>Mobile robots</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Sonar detection</topic><topic>Sonar features</topic><topic>Sonar measurements</topic><topic>Uncertainty</topic><topic>Visual objects</topic><toplevel>online_resources</toplevel><creatorcontrib>Jinwoo Choi</creatorcontrib><creatorcontrib>Sunghwan Ahn</creatorcontrib><creatorcontrib>Minyong Choi</creatorcontrib><creatorcontrib>Wan Kyun Chung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinwoo Choi</au><au>Sunghwan Ahn</au><au>Minyong Choi</au><au>Wan Kyun Chung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metric SLAM in Home Environment with Visual Objects and Sonar Features</atitle><btitle>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2006-10</date><risdate>2006</risdate><spage>4048</spage><epage>4053</epage><pages>4048-4053</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424402588</isbn><isbn>1424402581</isbn><eisbn>9781424402595</eisbn><eisbn>142440259X</eisbn><abstract>To increase the intelligence of mobile robot, various sensors need to be fused effectively to cope with uncertainty induced from both environment and sensors. Combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency vision based SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes: extracting robust point and line features from sonar data, and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. Fusing sonar features and visual objects through EKF-based SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in home environment. The performance of the proposed algorithm was verified by experiments in home environment with dynamic obstacles</abstract><pub>IEEE</pub><doi>10.1109/IROS.2006.281866</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.4048-4053 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_4059042 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature detection Frequency Intelligent robots Intelligent sensors Mobile robot Mobile robots Object recognition Robustness Sensor fusion Simultaneous localization and mapping SLAM Sonar detection Sonar features Sonar measurements Uncertainty Visual objects |
title | Metric SLAM in Home Environment with Visual Objects and Sonar Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metric%20SLAM%20in%20Home%20Environment%20with%20Visual%20Objects%20and%20Sonar%20Features&rft.btitle=2006%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Jinwoo%20Choi&rft.date=2006-10&rft.spage=4048&rft.epage=4053&rft.pages=4048-4053&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424402588&rft.isbn_list=1424402581&rft_id=info:doi/10.1109/IROS.2006.281866&rft_dat=%3Cieee_6IE%3E4059042%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424402595&rft.eisbn_list=142440259X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4059042&rfr_iscdi=true |