SLAM with consistent mapping in an hybrid model

This paper presents a methodology for improving consistency of the simultaneous localization and mapping (SLAM) in large scale cyclic environments. The SLAM problem is embedded in a reactive sensor-based navigation approach and exploits data provided by a rotative laser range finder. The model of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Victorino, A.C., Rives, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3580
container_issue
container_start_page 3575
container_title
container_volume
creator Victorino, A.C.
Rives, P.
description This paper presents a methodology for improving consistency of the simultaneous localization and mapping (SLAM) in large scale cyclic environments. The SLAM problem is embedded in a reactive sensor-based navigation approach and exploits data provided by a rotative laser range finder. The model of the unknown indoor environment is structured as an hybrid representation, both topological and metric, which is incrementally built during the exploration task. A global likelihood function is modeled from the geometric elastic relationships between different places of the environment, constrained by a rigid metric model inside each place. The inconsistencies in the final resulted map are minimized by deforming the hybrid model with the optimization of the global likelihood of the system by applying a relaxation methodology. Results are presented which shows the minimization of inconsistencies related to an autonomous constructed hybrid model by the application of the proposed methodology
doi_str_mv 10.1109/IROS.2006.281647
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4058958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4058958</ieee_id><sourcerecordid>4058958</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8c5509241d346867b87a161163769a75a2058c73d7dad589472af06cdf8992b83</originalsourceid><addsrcrecordid>eNpVjF1LwzAUhuMXOGbvBW_yB7rlJDnJyeUYOgeVgdPrkTapi6xdaQuyf-9AEXxu3ouH92HsHsQMQLj5-nWznUkhzEwSGG0vWOYsgZZaC4kOL9lEAqpckDFX_xzR9Z9DumXZMHyKM8qhBpqw-bZYvPCvNO55dWyHNIyxHXnjuy61Hzy13Ld8fyr7FHhzDPFwx25qfxhi9rtT9v70-LZ8zovNar1cFHkCi2NOFaJwUkNQ2pCxJVkPBsAoa5y36KVAqqwKNviA5LSVvhamCjU5J0tSU_bw000xxl3Xp8b3p50-vxyS-gbrDkaE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SLAM with consistent mapping in an hybrid model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Victorino, A.C. ; Rives, P.</creator><creatorcontrib>Victorino, A.C. ; Rives, P.</creatorcontrib><description>This paper presents a methodology for improving consistency of the simultaneous localization and mapping (SLAM) in large scale cyclic environments. The SLAM problem is embedded in a reactive sensor-based navigation approach and exploits data provided by a rotative laser range finder. The model of the unknown indoor environment is structured as an hybrid representation, both topological and metric, which is incrementally built during the exploration task. A global likelihood function is modeled from the geometric elastic relationships between different places of the environment, constrained by a rigid metric model inside each place. The inconsistencies in the final resulted map are minimized by deforming the hybrid model with the optimization of the global likelihood of the system by applying a relaxation methodology. Results are presented which shows the minimization of inconsistencies related to an autonomous constructed hybrid model by the application of the proposed methodology</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424402588</identifier><identifier>ISBN: 1424402581</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424402595</identifier><identifier>EISBN: 142440259X</identifier><identifier>DOI: 10.1109/IROS.2006.281647</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error correction ; Indoor environments ; Intelligent robots ; Large-scale systems ; Laser modes ; Navigation ; Orbital robotics ; Robot sensing systems ; Simultaneous localization and mapping ; Solid modeling</subject><ispartof>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.3575-3580</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4058958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4058958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Victorino, A.C.</creatorcontrib><creatorcontrib>Rives, P.</creatorcontrib><title>SLAM with consistent mapping in an hybrid model</title><title>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper presents a methodology for improving consistency of the simultaneous localization and mapping (SLAM) in large scale cyclic environments. The SLAM problem is embedded in a reactive sensor-based navigation approach and exploits data provided by a rotative laser range finder. The model of the unknown indoor environment is structured as an hybrid representation, both topological and metric, which is incrementally built during the exploration task. A global likelihood function is modeled from the geometric elastic relationships between different places of the environment, constrained by a rigid metric model inside each place. The inconsistencies in the final resulted map are minimized by deforming the hybrid model with the optimization of the global likelihood of the system by applying a relaxation methodology. Results are presented which shows the minimization of inconsistencies related to an autonomous constructed hybrid model by the application of the proposed methodology</description><subject>Error correction</subject><subject>Indoor environments</subject><subject>Intelligent robots</subject><subject>Large-scale systems</subject><subject>Laser modes</subject><subject>Navigation</subject><subject>Orbital robotics</subject><subject>Robot sensing systems</subject><subject>Simultaneous localization and mapping</subject><subject>Solid modeling</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424402588</isbn><isbn>1424402581</isbn><isbn>9781424402595</isbn><isbn>142440259X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjF1LwzAUhuMXOGbvBW_yB7rlJDnJyeUYOgeVgdPrkTapi6xdaQuyf-9AEXxu3ouH92HsHsQMQLj5-nWznUkhzEwSGG0vWOYsgZZaC4kOL9lEAqpckDFX_xzR9Z9DumXZMHyKM8qhBpqw-bZYvPCvNO55dWyHNIyxHXnjuy61Hzy13Ld8fyr7FHhzDPFwx25qfxhi9rtT9v70-LZ8zovNar1cFHkCi2NOFaJwUkNQ2pCxJVkPBsAoa5y36KVAqqwKNviA5LSVvhamCjU5J0tSU_bw000xxl3Xp8b3p50-vxyS-gbrDkaE</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Victorino, A.C.</creator><creator>Rives, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>SLAM with consistent mapping in an hybrid model</title><author>Victorino, A.C. ; Rives, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8c5509241d346867b87a161163769a75a2058c73d7dad589472af06cdf8992b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Error correction</topic><topic>Indoor environments</topic><topic>Intelligent robots</topic><topic>Large-scale systems</topic><topic>Laser modes</topic><topic>Navigation</topic><topic>Orbital robotics</topic><topic>Robot sensing systems</topic><topic>Simultaneous localization and mapping</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Victorino, A.C.</creatorcontrib><creatorcontrib>Rives, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Victorino, A.C.</au><au>Rives, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SLAM with consistent mapping in an hybrid model</atitle><btitle>2006 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2006-10</date><risdate>2006</risdate><spage>3575</spage><epage>3580</epage><pages>3575-3580</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424402588</isbn><isbn>1424402581</isbn><eisbn>9781424402595</eisbn><eisbn>142440259X</eisbn><abstract>This paper presents a methodology for improving consistency of the simultaneous localization and mapping (SLAM) in large scale cyclic environments. The SLAM problem is embedded in a reactive sensor-based navigation approach and exploits data provided by a rotative laser range finder. The model of the unknown indoor environment is structured as an hybrid representation, both topological and metric, which is incrementally built during the exploration task. A global likelihood function is modeled from the geometric elastic relationships between different places of the environment, constrained by a rigid metric model inside each place. The inconsistencies in the final resulted map are minimized by deforming the hybrid model with the optimization of the global likelihood of the system by applying a relaxation methodology. Results are presented which shows the minimization of inconsistencies related to an autonomous constructed hybrid model by the application of the proposed methodology</abstract><pub>IEEE</pub><doi>10.1109/IROS.2006.281647</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.3575-3580
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_4058958
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Error correction
Indoor environments
Intelligent robots
Large-scale systems
Laser modes
Navigation
Orbital robotics
Robot sensing systems
Simultaneous localization and mapping
Solid modeling
title SLAM with consistent mapping in an hybrid model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SLAM%20with%20consistent%20mapping%20in%20an%20hybrid%20model&rft.btitle=2006%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Victorino,%20A.C.&rft.date=2006-10&rft.spage=3575&rft.epage=3580&rft.pages=3575-3580&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424402588&rft.isbn_list=1424402581&rft_id=info:doi/10.1109/IROS.2006.281647&rft_dat=%3Cieee_6IE%3E4058958%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424402595&rft.eisbn_list=142440259X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4058958&rfr_iscdi=true