Building Efficient Radial Basis Function Kernel Classifiers using Iterative Methods

Training algorithms for radial basis function Kernel classifiers (RBFKCs), such as the canonical support vector machine (SVM), often produce computationally burdensome classifiers when large training data sets are used. Additionally, this complexity is not directly controllable by the developer. A l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barsic, D., Carmen, C., Renjifo, C., Norman, K., Peacock, G.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 3
container_title
container_volume
creator Barsic, D.
Carmen, C.
Renjifo, C.
Norman, K.
Peacock, G.S.
description Training algorithms for radial basis function Kernel classifiers (RBFKCs), such as the canonical support vector machine (SVM), often produce computationally burdensome classifiers when large training data sets are used. Additionally, this complexity is not directly controllable by the developer. A least-squares variant of the SVM is used as a starting point for a proposed algorithm called the incremental asymmetric proximal support vector machine (IAPSVM). IAPSVM employs a greedy search method across the training data to select the centers of each RBF transform. This iterative building process produces a final classifier that compares favorably with both the SVM and another available complexity reduction algorithm (as measured by the number of RBF kernel transforms that must be evaluated to classify an unknown sample). Unlike SVM methods, IAPSVM enables an a priori decision for the complexity of the classifier. This capability is often important for developers when building RBFKCs for resource-constrained systems.
doi_str_mv 10.1109/MLSP.2006.275512
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4053611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4053611</ieee_id><sourcerecordid>4053611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9c8771f4bb1ed9fe184b4ca8a8129f6f47902a6c2871527e2d0ee4bad32b9d6a3</originalsourceid><addsrcrecordid>eNpVjEtPAjEURusrkSB7Ezf9A4O9d_pcCgElQjTCwh3pTG-1ZhzMdDDx34vRjd_mLE7Ox9gliDGAcNer5fpxjELoMRqlAI_YyBkLEqUUWhl3zAZYGls4tM8n_5zGUzaAQ1OgknDORjm_icOkkmhhwNaTfWpCal_4LMZUJ2p7_uRD8g2f-Jwyn-_buk-7lt9T11LDp43POcVEXeb7_BMueup8nz6Jr6h_3YV8wc6ibzKN_jhkm_lsM70rlg-3i-nNskhO9IWrrTEQZVUBBRcJrKxk7a23gC7qKI0T6HWN1oBCQxgEkax8KLFyQftyyK5-bxMRbT-69O67r60UqtQA5TdsD1W_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Building Efficient Radial Basis Function Kernel Classifiers using Iterative Methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barsic, D. ; Carmen, C. ; Renjifo, C. ; Norman, K. ; Peacock, G.S.</creator><creatorcontrib>Barsic, D. ; Carmen, C. ; Renjifo, C. ; Norman, K. ; Peacock, G.S.</creatorcontrib><description>Training algorithms for radial basis function Kernel classifiers (RBFKCs), such as the canonical support vector machine (SVM), often produce computationally burdensome classifiers when large training data sets are used. Additionally, this complexity is not directly controllable by the developer. A least-squares variant of the SVM is used as a starting point for a proposed algorithm called the incremental asymmetric proximal support vector machine (IAPSVM). IAPSVM employs a greedy search method across the training data to select the centers of each RBF transform. This iterative building process produces a final classifier that compares favorably with both the SVM and another available complexity reduction algorithm (as measured by the number of RBF kernel transforms that must be evaluated to classify an unknown sample). Unlike SVM methods, IAPSVM enables an a priori decision for the complexity of the classifier. This capability is often important for developers when building RBFKCs for resource-constrained systems.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 9781424406562</identifier><identifier>ISBN: 1424406560</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781424406579</identifier><identifier>EISBN: 1424406579</identifier><identifier>DOI: 10.1109/MLSP.2006.275512</identifier><language>eng</language><publisher>IEEE</publisher><subject>Iterative algorithms ; Iterative methods ; Kernel ; Nonlinear equations ; Physics ; Robustness ; Support vector machine classification ; Support vector machines ; Training data ; Transforms</subject><ispartof>2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, p.3-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4053611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4053611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barsic, D.</creatorcontrib><creatorcontrib>Carmen, C.</creatorcontrib><creatorcontrib>Renjifo, C.</creatorcontrib><creatorcontrib>Norman, K.</creatorcontrib><creatorcontrib>Peacock, G.S.</creatorcontrib><title>Building Efficient Radial Basis Function Kernel Classifiers using Iterative Methods</title><title>2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>Training algorithms for radial basis function Kernel classifiers (RBFKCs), such as the canonical support vector machine (SVM), often produce computationally burdensome classifiers when large training data sets are used. Additionally, this complexity is not directly controllable by the developer. A least-squares variant of the SVM is used as a starting point for a proposed algorithm called the incremental asymmetric proximal support vector machine (IAPSVM). IAPSVM employs a greedy search method across the training data to select the centers of each RBF transform. This iterative building process produces a final classifier that compares favorably with both the SVM and another available complexity reduction algorithm (as measured by the number of RBF kernel transforms that must be evaluated to classify an unknown sample). Unlike SVM methods, IAPSVM enables an a priori decision for the complexity of the classifier. This capability is often important for developers when building RBFKCs for resource-constrained systems.</description><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Robustness</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Training data</subject><subject>Transforms</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781424406562</isbn><isbn>1424406560</isbn><isbn>9781424406579</isbn><isbn>1424406579</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjEtPAjEURusrkSB7Ezf9A4O9d_pcCgElQjTCwh3pTG-1ZhzMdDDx34vRjd_mLE7Ox9gliDGAcNer5fpxjELoMRqlAI_YyBkLEqUUWhl3zAZYGls4tM8n_5zGUzaAQ1OgknDORjm_icOkkmhhwNaTfWpCal_4LMZUJ2p7_uRD8g2f-Jwyn-_buk-7lt9T11LDp43POcVEXeb7_BMueup8nz6Jr6h_3YV8wc6ibzKN_jhkm_lsM70rlg-3i-nNskhO9IWrrTEQZVUBBRcJrKxk7a23gC7qKI0T6HWN1oBCQxgEkax8KLFyQftyyK5-bxMRbT-69O67r60UqtQA5TdsD1W_</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Barsic, D.</creator><creator>Carmen, C.</creator><creator>Renjifo, C.</creator><creator>Norman, K.</creator><creator>Peacock, G.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200609</creationdate><title>Building Efficient Radial Basis Function Kernel Classifiers using Iterative Methods</title><author>Barsic, D. ; Carmen, C. ; Renjifo, C. ; Norman, K. ; Peacock, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9c8771f4bb1ed9fe184b4ca8a8129f6f47902a6c2871527e2d0ee4bad32b9d6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Robustness</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Training data</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Barsic, D.</creatorcontrib><creatorcontrib>Carmen, C.</creatorcontrib><creatorcontrib>Renjifo, C.</creatorcontrib><creatorcontrib>Norman, K.</creatorcontrib><creatorcontrib>Peacock, G.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barsic, D.</au><au>Carmen, C.</au><au>Renjifo, C.</au><au>Norman, K.</au><au>Peacock, G.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Building Efficient Radial Basis Function Kernel Classifiers using Iterative Methods</atitle><btitle>2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2006-09</date><risdate>2006</risdate><spage>3</spage><epage>8</epage><pages>3-8</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>9781424406562</isbn><isbn>1424406560</isbn><eisbn>9781424406579</eisbn><eisbn>1424406579</eisbn><abstract>Training algorithms for radial basis function Kernel classifiers (RBFKCs), such as the canonical support vector machine (SVM), often produce computationally burdensome classifiers when large training data sets are used. Additionally, this complexity is not directly controllable by the developer. A least-squares variant of the SVM is used as a starting point for a proposed algorithm called the incremental asymmetric proximal support vector machine (IAPSVM). IAPSVM employs a greedy search method across the training data to select the centers of each RBF transform. This iterative building process produces a final classifier that compares favorably with both the SVM and another available complexity reduction algorithm (as measured by the number of RBF kernel transforms that must be evaluated to classify an unknown sample). Unlike SVM methods, IAPSVM enables an a priori decision for the complexity of the classifier. This capability is often important for developers when building RBFKCs for resource-constrained systems.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2006.275512</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, p.3-8
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_4053611
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Iterative algorithms
Iterative methods
Kernel
Nonlinear equations
Physics
Robustness
Support vector machine classification
Support vector machines
Training data
Transforms
title Building Efficient Radial Basis Function Kernel Classifiers using Iterative Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Building%20Efficient%20Radial%20Basis%20Function%20Kernel%20Classifiers%20using%20Iterative%20Methods&rft.btitle=2006%2016th%20IEEE%20Signal%20Processing%20Society%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Barsic,%20D.&rft.date=2006-09&rft.spage=3&rft.epage=8&rft.pages=3-8&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=9781424406562&rft.isbn_list=1424406560&rft_id=info:doi/10.1109/MLSP.2006.275512&rft_dat=%3Cieee_6IE%3E4053611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424406579&rft.eisbn_list=1424406579&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4053611&rfr_iscdi=true