An Efficient Hybrid Fuzzy Clustering Method

It is known that fuzzy algorithms will stop minimizing the objective function whenever reaches to a local minimum. It is known also that they are biased with the initial values of input parameters. In this work we address the minimizing problem of the objective function in the field of fuzzy cluster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mohseni, M., Minaei, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 43
container_title
container_volume
creator Mohseni, M.
Minaei, B.
description It is known that fuzzy algorithms will stop minimizing the objective function whenever reaches to a local minimum. It is known also that they are biased with the initial values of input parameters. In this work we address the minimizing problem of the objective function in the field of fuzzy clustering and introduce a method which is based on the majorization idea and the KNN algorithm. It speeds up the search for the minimum, passes the local minimum, and also tries to set the initial values into sound values. We use a modified version of the KNN in such a way that the initial values for the parameters can be settled. There are two approaches for dealing with local minima. The algorithm has been put into study by applying it into three known datasets. The results show that the performance of the proposed method is promising
doi_str_mv 10.1109/SMAP.2006.10
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4041957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4041957</ieee_id><sourcerecordid>4041957</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b8ff5435020d21afbf96ac35529ac660635371ab74f5d8292dacf682e1e3363f3</originalsourceid><addsrcrecordid>eNotzMFLwzAUgPGACOrczZuX3KX15aV5aY6lbE7YcDA9j7TJ08is0naH7q9XmN_ld_uEuFOQKwXucbeptjkCUK7gQtyAJWeQHNKVmA_DJ_ylHaGFa_FQdXLBnNoUu1GupqZPQS6Pp9Mk68NxGGOfune5iePHd7gVl-wPQ5z_OxNvy8VrvcrWL0_PdbXOkrJmzJqS2RTaAEJA5blhR77VxqDzLRGQNtoq39iCTSjRYfAtU4lRRa1Js56J-_M3xRj3P3368v20L6BQzlj9C_fvPi0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Efficient Hybrid Fuzzy Clustering Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mohseni, M. ; Minaei, B.</creator><creatorcontrib>Mohseni, M. ; Minaei, B.</creatorcontrib><description>It is known that fuzzy algorithms will stop minimizing the objective function whenever reaches to a local minimum. It is known also that they are biased with the initial values of input parameters. In this work we address the minimizing problem of the objective function in the field of fuzzy clustering and introduce a method which is based on the majorization idea and the KNN algorithm. It speeds up the search for the minimum, passes the local minimum, and also tries to set the initial values into sound values. We use a modified version of the KNN in such a way that the initial values for the parameters can be settled. There are two approaches for dealing with local minima. The algorithm has been put into study by applying it into three known datasets. The results show that the performance of the proposed method is promising</description><identifier>ISBN: 0769526926</identifier><identifier>ISBN: 9780769526928</identifier><identifier>DOI: 10.1109/SMAP.2006.10</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Clustering methods ; Convergence ; Fuzzy set theory ; Fuzzy sets ; Iterative algorithms ; Iterative methods</subject><ispartof>2006 First International Workshop on Semantic Media Adaptation and Personalization (SMAP'06), 2006, p.43-48</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4041957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4041957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohseni, M.</creatorcontrib><creatorcontrib>Minaei, B.</creatorcontrib><title>An Efficient Hybrid Fuzzy Clustering Method</title><title>2006 First International Workshop on Semantic Media Adaptation and Personalization (SMAP'06)</title><addtitle>SMAP</addtitle><description>It is known that fuzzy algorithms will stop minimizing the objective function whenever reaches to a local minimum. It is known also that they are biased with the initial values of input parameters. In this work we address the minimizing problem of the objective function in the field of fuzzy clustering and introduce a method which is based on the majorization idea and the KNN algorithm. It speeds up the search for the minimum, passes the local minimum, and also tries to set the initial values into sound values. We use a modified version of the KNN in such a way that the initial values for the parameters can be settled. There are two approaches for dealing with local minima. The algorithm has been put into study by applying it into three known datasets. The results show that the performance of the proposed method is promising</description><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Convergence</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><isbn>0769526926</isbn><isbn>9780769526928</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzMFLwzAUgPGACOrczZuX3KX15aV5aY6lbE7YcDA9j7TJ08is0naH7q9XmN_ld_uEuFOQKwXucbeptjkCUK7gQtyAJWeQHNKVmA_DJ_ylHaGFa_FQdXLBnNoUu1GupqZPQS6Pp9Mk68NxGGOfune5iePHd7gVl-wPQ5z_OxNvy8VrvcrWL0_PdbXOkrJmzJqS2RTaAEJA5blhR77VxqDzLRGQNtoq39iCTSjRYfAtU4lRRa1Js56J-_M3xRj3P3368v20L6BQzlj9C_fvPi0</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Mohseni, M.</creator><creator>Minaei, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>An Efficient Hybrid Fuzzy Clustering Method</title><author>Mohseni, M. ; Minaei, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b8ff5435020d21afbf96ac35529ac660635371ab74f5d8292dacf682e1e3363f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Convergence</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohseni, M.</creatorcontrib><creatorcontrib>Minaei, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohseni, M.</au><au>Minaei, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Efficient Hybrid Fuzzy Clustering Method</atitle><btitle>2006 First International Workshop on Semantic Media Adaptation and Personalization (SMAP'06)</btitle><stitle>SMAP</stitle><date>2006-12</date><risdate>2006</risdate><spage>43</spage><epage>48</epage><pages>43-48</pages><isbn>0769526926</isbn><isbn>9780769526928</isbn><abstract>It is known that fuzzy algorithms will stop minimizing the objective function whenever reaches to a local minimum. It is known also that they are biased with the initial values of input parameters. In this work we address the minimizing problem of the objective function in the field of fuzzy clustering and introduce a method which is based on the majorization idea and the KNN algorithm. It speeds up the search for the minimum, passes the local minimum, and also tries to set the initial values into sound values. We use a modified version of the KNN in such a way that the initial values for the parameters can be settled. There are two approaches for dealing with local minima. The algorithm has been put into study by applying it into three known datasets. The results show that the performance of the proposed method is promising</abstract><pub>IEEE</pub><doi>10.1109/SMAP.2006.10</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769526926
ispartof 2006 First International Workshop on Semantic Media Adaptation and Personalization (SMAP'06), 2006, p.43-48
issn
language eng
recordid cdi_ieee_primary_4041957
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Clustering methods
Convergence
Fuzzy set theory
Fuzzy sets
Iterative algorithms
Iterative methods
title An Efficient Hybrid Fuzzy Clustering Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Efficient%20Hybrid%20Fuzzy%20Clustering%20Method&rft.btitle=2006%20First%20International%20Workshop%20on%20Semantic%20Media%20Adaptation%20and%20Personalization%20(SMAP'06)&rft.au=Mohseni,%20M.&rft.date=2006-12&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.isbn=0769526926&rft.isbn_list=9780769526928&rft_id=info:doi/10.1109/SMAP.2006.10&rft_dat=%3Cieee_6IE%3E4041957%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4041957&rfr_iscdi=true