Offloading IDS Computation to the GPU

Signature-matching intrusion detection systems can experience significant decreases in performance when the load on the IDS-host increases. We propose a solution that off-loads some of the computation performed by the IDS to the graphics processing unit (GPU). Modern GPUs are programmable, stream-pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jacob, N., Brodley, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue
container_start_page 371
container_title
container_volume
creator Jacob, N.
Brodley, C.
description Signature-matching intrusion detection systems can experience significant decreases in performance when the load on the IDS-host increases. We propose a solution that off-loads some of the computation performed by the IDS to the graphics processing unit (GPU). Modern GPUs are programmable, stream-processors capable of high-performance computing that in recent years have been used in non-graphical computing tasks. The major operation in a signature-matching IDS is matching values seen operation to known black-listed values, as such, our solution implements the string-matching on the GPU. The results show that as the CPU load on the IDS host system increases, PixelSnort's performance is significantly more robust and is able to outperform conventional Snort by up to 40%
doi_str_mv 10.1109/ACSAC.2006.35
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4041182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4041182</ieee_id><sourcerecordid>4041182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-35e97994c206afad38d81b454b50d189818f40e3ca10449295ae1840b4f2220e3</originalsourceid><addsrcrecordid>eNotjE1Lw0AUABc_wLR69ORlLx6Tvrf79uMdQ6y1UGih9lw2za5G2qY08eC_V9HTMAyMEPcIBSLwpKzWZVUoAFtocyEyZZzNGUFfihE4y0Y5tO5KZAhW5796I0Z9_wGAzA4z8bhMad-Fpj2-yfnTWlbd4fQ5hKHtjnLo5PAe5Wy1uRXXKez7ePfPsdg8T1-rl3yxnM2rcpG3CmnItYnsmGmnwIYUGu0bjzUZqg006NmjTwRR7wICESs2IaInqCkppX7CWDz8fdsY4_Z0bg_h_LUlIESv9DfhfD3b</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Offloading IDS Computation to the GPU</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jacob, N. ; Brodley, C.</creator><creatorcontrib>Jacob, N. ; Brodley, C.</creatorcontrib><description>Signature-matching intrusion detection systems can experience significant decreases in performance when the load on the IDS-host increases. We propose a solution that off-loads some of the computation performed by the IDS to the graphics processing unit (GPU). Modern GPUs are programmable, stream-processors capable of high-performance computing that in recent years have been used in non-graphical computing tasks. The major operation in a signature-matching IDS is matching values seen operation to known black-listed values, as such, our solution implements the string-matching on the GPU. The results show that as the CPU load on the IDS host system increases, PixelSnort's performance is significantly more robust and is able to outperform conventional Snort by up to 40%</description><identifier>ISSN: 1063-9527</identifier><identifier>ISBN: 0769527167</identifier><identifier>ISBN: 9780769527161</identifier><identifier>EISSN: 2576-9103</identifier><identifier>DOI: 10.1109/ACSAC.2006.35</identifier><language>eng</language><publisher>IEEE</publisher><subject>Central Processing Unit ; Computer crashes ; Computer graphics ; Computer science ; Educational institutions ; Floods ; Intrusion detection ; Jacobian matrices ; Operating systems ; Robustness</subject><ispartof>2006 22nd Annual Computer Security Applications Conference (ACSAC'06), 2006, p.371-380</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4041182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4041182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jacob, N.</creatorcontrib><creatorcontrib>Brodley, C.</creatorcontrib><title>Offloading IDS Computation to the GPU</title><title>2006 22nd Annual Computer Security Applications Conference (ACSAC'06)</title><addtitle>ACSAC</addtitle><description>Signature-matching intrusion detection systems can experience significant decreases in performance when the load on the IDS-host increases. We propose a solution that off-loads some of the computation performed by the IDS to the graphics processing unit (GPU). Modern GPUs are programmable, stream-processors capable of high-performance computing that in recent years have been used in non-graphical computing tasks. The major operation in a signature-matching IDS is matching values seen operation to known black-listed values, as such, our solution implements the string-matching on the GPU. The results show that as the CPU load on the IDS host system increases, PixelSnort's performance is significantly more robust and is able to outperform conventional Snort by up to 40%</description><subject>Central Processing Unit</subject><subject>Computer crashes</subject><subject>Computer graphics</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>Floods</subject><subject>Intrusion detection</subject><subject>Jacobian matrices</subject><subject>Operating systems</subject><subject>Robustness</subject><issn>1063-9527</issn><issn>2576-9103</issn><isbn>0769527167</isbn><isbn>9780769527161</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1Lw0AUABc_wLR69ORlLx6Tvrf79uMdQ6y1UGih9lw2za5G2qY08eC_V9HTMAyMEPcIBSLwpKzWZVUoAFtocyEyZZzNGUFfihE4y0Y5tO5KZAhW5796I0Z9_wGAzA4z8bhMad-Fpj2-yfnTWlbd4fQ5hKHtjnLo5PAe5Wy1uRXXKez7ePfPsdg8T1-rl3yxnM2rcpG3CmnItYnsmGmnwIYUGu0bjzUZqg006NmjTwRR7wICESs2IaInqCkppX7CWDz8fdsY4_Z0bg_h_LUlIESv9DfhfD3b</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Jacob, N.</creator><creator>Brodley, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20060101</creationdate><title>Offloading IDS Computation to the GPU</title><author>Jacob, N. ; Brodley, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-35e97994c206afad38d81b454b50d189818f40e3ca10449295ae1840b4f2220e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Central Processing Unit</topic><topic>Computer crashes</topic><topic>Computer graphics</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>Floods</topic><topic>Intrusion detection</topic><topic>Jacobian matrices</topic><topic>Operating systems</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jacob, N.</creatorcontrib><creatorcontrib>Brodley, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jacob, N.</au><au>Brodley, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Offloading IDS Computation to the GPU</atitle><btitle>2006 22nd Annual Computer Security Applications Conference (ACSAC'06)</btitle><stitle>ACSAC</stitle><date>2006-01-01</date><risdate>2006</risdate><spage>371</spage><epage>380</epage><pages>371-380</pages><issn>1063-9527</issn><eissn>2576-9103</eissn><isbn>0769527167</isbn><isbn>9780769527161</isbn><abstract>Signature-matching intrusion detection systems can experience significant decreases in performance when the load on the IDS-host increases. We propose a solution that off-loads some of the computation performed by the IDS to the graphics processing unit (GPU). Modern GPUs are programmable, stream-processors capable of high-performance computing that in recent years have been used in non-graphical computing tasks. The major operation in a signature-matching IDS is matching values seen operation to known black-listed values, as such, our solution implements the string-matching on the GPU. The results show that as the CPU load on the IDS host system increases, PixelSnort's performance is significantly more robust and is able to outperform conventional Snort by up to 40%</abstract><pub>IEEE</pub><doi>10.1109/ACSAC.2006.35</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-9527
ispartof 2006 22nd Annual Computer Security Applications Conference (ACSAC'06), 2006, p.371-380
issn 1063-9527
2576-9103
language eng
recordid cdi_ieee_primary_4041182
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Central Processing Unit
Computer crashes
Computer graphics
Computer science
Educational institutions
Floods
Intrusion detection
Jacobian matrices
Operating systems
Robustness
title Offloading IDS Computation to the GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Offloading%20IDS%20Computation%20to%20the%20GPU&rft.btitle=2006%2022nd%20Annual%20Computer%20Security%20Applications%20Conference%20(ACSAC'06)&rft.au=Jacob,%20N.&rft.date=2006-01-01&rft.spage=371&rft.epage=380&rft.pages=371-380&rft.issn=1063-9527&rft.eissn=2576-9103&rft.isbn=0769527167&rft.isbn_list=9780769527161&rft_id=info:doi/10.1109/ACSAC.2006.35&rft_dat=%3Cieee_6IE%3E4041182%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4041182&rfr_iscdi=true