Optimal prefix codes for pairs of geometrically-distributed random variables
Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the l...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2671 |
---|---|
container_issue | |
container_start_page | 2667 |
container_title | |
container_volume | |
creator | Bassino, F. Clement, J. Seroussi, G. Viola, A. |
description | Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi > 0, of values of q |
doi_str_mv | 10.1109/ISIT.2006.262137 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4036456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4036456</ieee_id><sourcerecordid>4036456</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-f2d5d4a1fe3606b8e21f9b0ab20aa0fe7d4d2eced96123fe4b2e24c2ef90d2353</originalsourceid><addsrcrecordid>eNpFj0tLw0AUhccXWGv3gpv5A6n33nmkWUrxESh0YQV3ZZK5IyOpCTNR7L-3oOLZfAc-OHCEuEKYI0J1Uz_VmzkB2DlZQlUeiQvUpDUY0HgsJoSmLBaI5cm_MC-nfwIqcy5mOb_BIdpoquxErNbDGHeuk0PiEL9k23vOMvRJDi6mLPsgX7nf8Zhi67puX_iYD735GNnL5N59v5OfLkXXdJwvxVlwXebZL6fi-f5us3wsVuuHenm7KiJhORaBvPHaYWBlwTYLJgxVA64hcA4Cl1574pZ9ZZFUYN0Qk26JQwWelFFTcf2zG5l5O6TDgbTfalBWG6u-ASqfU2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal prefix codes for pairs of geometrically-distributed random variables</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bassino, F. ; Clement, J. ; Seroussi, G. ; Viola, A.</creator><creatorcontrib>Bassino, F. ; Clement, J. ; Seroussi, G. ; Viola, A.</creatorcontrib><description>Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi > 0, of values of q</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 142440505X</identifier><identifier>ISBN: 9781424405053</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 1424405041</identifier><identifier>EISBN: 9781424405046</identifier><identifier>DOI: 10.1109/ISIT.2006.262137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Computer applications ; Decoding ; Delay ; Entropy ; Image coding ; Probability distribution ; Random variables ; Terminology</subject><ispartof>2006 IEEE International Symposium on Information Theory, 2006, p.2667-2671</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4036456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4036456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bassino, F.</creatorcontrib><creatorcontrib>Clement, J.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Viola, A.</creatorcontrib><title>Optimal prefix codes for pairs of geometrically-distributed random variables</title><title>2006 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi > 0, of values of q</description><subject>Buildings</subject><subject>Computer applications</subject><subject>Decoding</subject><subject>Delay</subject><subject>Entropy</subject><subject>Image coding</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Terminology</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>142440505X</isbn><isbn>9781424405053</isbn><isbn>1424405041</isbn><isbn>9781424405046</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLw0AUhccXWGv3gpv5A6n33nmkWUrxESh0YQV3ZZK5IyOpCTNR7L-3oOLZfAc-OHCEuEKYI0J1Uz_VmzkB2DlZQlUeiQvUpDUY0HgsJoSmLBaI5cm_MC-nfwIqcy5mOb_BIdpoquxErNbDGHeuk0PiEL9k23vOMvRJDi6mLPsgX7nf8Zhi67puX_iYD735GNnL5N59v5OfLkXXdJwvxVlwXebZL6fi-f5us3wsVuuHenm7KiJhORaBvPHaYWBlwTYLJgxVA64hcA4Cl1574pZ9ZZFUYN0Qk26JQwWelFFTcf2zG5l5O6TDgbTfalBWG6u-ASqfU2w</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Bassino, F.</creator><creator>Clement, J.</creator><creator>Seroussi, G.</creator><creator>Viola, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20060101</creationdate><title>Optimal prefix codes for pairs of geometrically-distributed random variables</title><author>Bassino, F. ; Clement, J. ; Seroussi, G. ; Viola, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-f2d5d4a1fe3606b8e21f9b0ab20aa0fe7d4d2eced96123fe4b2e24c2ef90d2353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Buildings</topic><topic>Computer applications</topic><topic>Decoding</topic><topic>Delay</topic><topic>Entropy</topic><topic>Image coding</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Terminology</topic><toplevel>online_resources</toplevel><creatorcontrib>Bassino, F.</creatorcontrib><creatorcontrib>Clement, J.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Viola, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bassino, F.</au><au>Clement, J.</au><au>Seroussi, G.</au><au>Viola, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal prefix codes for pairs of geometrically-distributed random variables</atitle><btitle>2006 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2006-01-01</date><risdate>2006</risdate><spage>2667</spage><epage>2671</epage><pages>2667-2671</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>142440505X</isbn><isbn>9781424405053</isbn><eisbn>1424405041</eisbn><eisbn>9781424405046</eisbn><abstract>Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi > 0, of values of q</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2006.262137</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2006 IEEE International Symposium on Information Theory, 2006, p.2667-2671 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_4036456 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buildings Computer applications Decoding Delay Entropy Image coding Probability distribution Random variables Terminology |
title | Optimal prefix codes for pairs of geometrically-distributed random variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20prefix%20codes%20for%20pairs%20of%20geometrically-distributed%20random%20variables&rft.btitle=2006%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Bassino,%20F.&rft.date=2006-01-01&rft.spage=2667&rft.epage=2671&rft.pages=2667-2671&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=142440505X&rft.isbn_list=9781424405053&rft_id=info:doi/10.1109/ISIT.2006.262137&rft_dat=%3Cieee_6IE%3E4036456%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405041&rft.eisbn_list=9781424405046&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4036456&rfr_iscdi=true |