Optimal prefix codes for pairs of geometrically-distributed random variables

Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bassino, F., Clement, J., Seroussi, G., Viola, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2671
container_issue
container_start_page 2667
container_title
container_volume
creator Bassino, F.
Clement, J.
Seroussi, G.
Viola, A.
description Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 < q < 1. Optimal prefix codes are described for q = 1/2 k (k > 1) and q = 1/knthroot2 (k > 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi > 0, of values of q
doi_str_mv 10.1109/ISIT.2006.262137
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4036456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4036456</ieee_id><sourcerecordid>4036456</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-f2d5d4a1fe3606b8e21f9b0ab20aa0fe7d4d2eced96123fe4b2e24c2ef90d2353</originalsourceid><addsrcrecordid>eNpFj0tLw0AUhccXWGv3gpv5A6n33nmkWUrxESh0YQV3ZZK5IyOpCTNR7L-3oOLZfAc-OHCEuEKYI0J1Uz_VmzkB2DlZQlUeiQvUpDUY0HgsJoSmLBaI5cm_MC-nfwIqcy5mOb_BIdpoquxErNbDGHeuk0PiEL9k23vOMvRJDi6mLPsgX7nf8Zhi67puX_iYD735GNnL5N59v5OfLkXXdJwvxVlwXebZL6fi-f5us3wsVuuHenm7KiJhORaBvPHaYWBlwTYLJgxVA64hcA4Cl1574pZ9ZZFUYN0Qk26JQwWelFFTcf2zG5l5O6TDgbTfalBWG6u-ASqfU2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal prefix codes for pairs of geometrically-distributed random variables</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bassino, F. ; Clement, J. ; Seroussi, G. ; Viola, A.</creator><creatorcontrib>Bassino, F. ; Clement, J. ; Seroussi, G. ; Viola, A.</creatorcontrib><description>Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 &lt; q &lt; 1. Optimal prefix codes are described for q = 1/2 k (k &gt; 1) and q = 1/knthroot2 (k &gt; 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi &gt; 0, of values of q</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 142440505X</identifier><identifier>ISBN: 9781424405053</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 1424405041</identifier><identifier>EISBN: 9781424405046</identifier><identifier>DOI: 10.1109/ISIT.2006.262137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Computer applications ; Decoding ; Delay ; Entropy ; Image coding ; Probability distribution ; Random variables ; Terminology</subject><ispartof>2006 IEEE International Symposium on Information Theory, 2006, p.2667-2671</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4036456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4036456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bassino, F.</creatorcontrib><creatorcontrib>Clement, J.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Viola, A.</creatorcontrib><title>Optimal prefix codes for pairs of geometrically-distributed random variables</title><title>2006 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 &lt; q &lt; 1. Optimal prefix codes are described for q = 1/2 k (k &gt; 1) and q = 1/knthroot2 (k &gt; 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi &gt; 0, of values of q</description><subject>Buildings</subject><subject>Computer applications</subject><subject>Decoding</subject><subject>Delay</subject><subject>Entropy</subject><subject>Image coding</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Terminology</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>142440505X</isbn><isbn>9781424405053</isbn><isbn>1424405041</isbn><isbn>9781424405046</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLw0AUhccXWGv3gpv5A6n33nmkWUrxESh0YQV3ZZK5IyOpCTNR7L-3oOLZfAc-OHCEuEKYI0J1Uz_VmzkB2DlZQlUeiQvUpDUY0HgsJoSmLBaI5cm_MC-nfwIqcy5mOb_BIdpoquxErNbDGHeuk0PiEL9k23vOMvRJDi6mLPsgX7nf8Zhi67puX_iYD735GNnL5N59v5OfLkXXdJwvxVlwXebZL6fi-f5us3wsVuuHenm7KiJhORaBvPHaYWBlwTYLJgxVA64hcA4Cl1574pZ9ZZFUYN0Qk26JQwWelFFTcf2zG5l5O6TDgbTfalBWG6u-ASqfU2w</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Bassino, F.</creator><creator>Clement, J.</creator><creator>Seroussi, G.</creator><creator>Viola, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20060101</creationdate><title>Optimal prefix codes for pairs of geometrically-distributed random variables</title><author>Bassino, F. ; Clement, J. ; Seroussi, G. ; Viola, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-f2d5d4a1fe3606b8e21f9b0ab20aa0fe7d4d2eced96123fe4b2e24c2ef90d2353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Buildings</topic><topic>Computer applications</topic><topic>Decoding</topic><topic>Delay</topic><topic>Entropy</topic><topic>Image coding</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Terminology</topic><toplevel>online_resources</toplevel><creatorcontrib>Bassino, F.</creatorcontrib><creatorcontrib>Clement, J.</creatorcontrib><creatorcontrib>Seroussi, G.</creatorcontrib><creatorcontrib>Viola, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bassino, F.</au><au>Clement, J.</au><au>Seroussi, G.</au><au>Viola, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal prefix codes for pairs of geometrically-distributed random variables</atitle><btitle>2006 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2006-01-01</date><risdate>2006</risdate><spage>2667</spage><epage>2671</epage><pages>2667-2671</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>142440505X</isbn><isbn>9781424405053</isbn><eisbn>1424405041</eisbn><eisbn>9781424405046</eisbn><abstract>Lossless compression is studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter q, 0 &lt; q &lt; 1. Optimal prefix codes are described for q = 1/2 k (k &gt; 1) and q = 1/knthroot2 (k &gt; 0). These codes retain some of the low-complexity and low-latency advantage of symbol by symbol coding of geometric distributions, which is widely used in practice, while improving on the inherent redundancy of the approach. From a combinatorial standpoint, the codes described differ from previously characterized cases related to the geometric distribution in that their corresponding trees are of unbounded width, and in that an infinite set of distinct optimal codes is required to cover any interval (0,epsi), epsi &gt; 0, of values of q</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2006.262137</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2006 IEEE International Symposium on Information Theory, 2006, p.2667-2671
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_4036456
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buildings
Computer applications
Decoding
Delay
Entropy
Image coding
Probability distribution
Random variables
Terminology
title Optimal prefix codes for pairs of geometrically-distributed random variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20prefix%20codes%20for%20pairs%20of%20geometrically-distributed%20random%20variables&rft.btitle=2006%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Bassino,%20F.&rft.date=2006-01-01&rft.spage=2667&rft.epage=2671&rft.pages=2667-2671&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=142440505X&rft.isbn_list=9781424405053&rft_id=info:doi/10.1109/ISIT.2006.262137&rft_dat=%3Cieee_6IE%3E4036456%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405041&rft.eisbn_list=9781424405046&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4036456&rfr_iscdi=true