Generating parity check equations for bounded-distance iterative erasure decoding
A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the on...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | |
container_start_page | 514 |
container_title | |
container_volume | |
creator | Hollmann, H.D.L. Tolhuizen, L.M.G.M. |
description | A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r |
doi_str_mv | 10.1109/ISIT.2006.261769 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4036015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4036015</ieee_id><sourcerecordid>4036015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-7f90b988babd905b64839cead7532fd39d64cde3e39b21097585a545cc0efb223</originalsourceid><addsrcrecordid>eNpFj0lLA0EUhNsNjDF3wUv_gYmv9-mjBI0DAREjeAu9vNF2mYk9M0L-vYML1qWgPqqgCDljMGcM7EV1X63nHEDPuWZG2z1ywiSXEhRItk8mnClTlIyZg3-gHg__AFh1TGZd9wKjpJLc6gm5W2KD2fWpeaJbl1O_o-EZwyvFj2FM26ajdZupb4cmYixi6nrXBKSp_259Ih29GzLSiKGN48wpOardW4ezX5-Sh-ur9eKmWN0uq8Xlqkicmb4wtQVvy9I7Hy0or2UpbEAXjRK8jsJGLUNEgcJ6Pr43qlROSRUCYO05F1Ny_rObEHGzzend5d1GgtDAlPgC_LxUnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generating parity check equations for bounded-distance iterative erasure decoding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hollmann, H.D.L. ; Tolhuizen, L.M.G.M.</creator><creatorcontrib>Hollmann, H.D.L. ; Tolhuizen, L.M.G.M.</creatorcontrib><description>A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 142440505X</identifier><identifier>ISBN: 9781424405053</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 1424405041</identifier><identifier>EISBN: 9781424405046</identifier><identifier>DOI: 10.1109/ISIT.2006.261769</identifier><language>eng</language><publisher>IEEE</publisher><subject>binary erasure channel ; Differential equations ; Iterative algorithms ; Iterative decoding ; Laboratories ; Linear code ; Parity check codes ; stopping set</subject><ispartof>2006 IEEE International Symposium on Information Theory, 2006, p.514-517</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4036015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4036015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hollmann, H.D.L.</creatorcontrib><creatorcontrib>Tolhuizen, L.M.G.M.</creatorcontrib><title>Generating parity check equations for bounded-distance iterative erasure decoding</title><title>2006 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r</description><subject>binary erasure channel</subject><subject>Differential equations</subject><subject>Iterative algorithms</subject><subject>Iterative decoding</subject><subject>Laboratories</subject><subject>Linear code</subject><subject>Parity check codes</subject><subject>stopping set</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>142440505X</isbn><isbn>9781424405053</isbn><isbn>1424405041</isbn><isbn>9781424405046</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0lLA0EUhNsNjDF3wUv_gYmv9-mjBI0DAREjeAu9vNF2mYk9M0L-vYML1qWgPqqgCDljMGcM7EV1X63nHEDPuWZG2z1ywiSXEhRItk8mnClTlIyZg3-gHg__AFh1TGZd9wKjpJLc6gm5W2KD2fWpeaJbl1O_o-EZwyvFj2FM26ajdZupb4cmYixi6nrXBKSp_259Ih29GzLSiKGN48wpOardW4ezX5-Sh-ur9eKmWN0uq8Xlqkicmb4wtQVvy9I7Hy0or2UpbEAXjRK8jsJGLUNEgcJ6Pr43qlROSRUCYO05F1Ny_rObEHGzzend5d1GgtDAlPgC_LxUnA</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Hollmann, H.D.L.</creator><creator>Tolhuizen, L.M.G.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20060101</creationdate><title>Generating parity check equations for bounded-distance iterative erasure decoding</title><author>Hollmann, H.D.L. ; Tolhuizen, L.M.G.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-7f90b988babd905b64839cead7532fd39d64cde3e39b21097585a545cc0efb223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>binary erasure channel</topic><topic>Differential equations</topic><topic>Iterative algorithms</topic><topic>Iterative decoding</topic><topic>Laboratories</topic><topic>Linear code</topic><topic>Parity check codes</topic><topic>stopping set</topic><toplevel>online_resources</toplevel><creatorcontrib>Hollmann, H.D.L.</creatorcontrib><creatorcontrib>Tolhuizen, L.M.G.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hollmann, H.D.L.</au><au>Tolhuizen, L.M.G.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generating parity check equations for bounded-distance iterative erasure decoding</atitle><btitle>2006 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2006-01-01</date><risdate>2006</risdate><spage>514</spage><epage>517</epage><pages>514-517</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>142440505X</isbn><isbn>9781424405053</isbn><eisbn>1424405041</eisbn><eisbn>9781424405046</eisbn><abstract>A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2006.261769</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2006 IEEE International Symposium on Information Theory, 2006, p.514-517 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_4036015 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | binary erasure channel Differential equations Iterative algorithms Iterative decoding Laboratories Linear code Parity check codes stopping set |
title | Generating parity check equations for bounded-distance iterative erasure decoding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generating%20parity%20check%20equations%20for%20bounded-distance%20iterative%20erasure%20decoding&rft.btitle=2006%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Hollmann,%20H.D.L.&rft.date=2006-01-01&rft.spage=514&rft.epage=517&rft.pages=514-517&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=142440505X&rft.isbn_list=9781424405053&rft_id=info:doi/10.1109/ISIT.2006.261769&rft_dat=%3Cieee_6IE%3E4036015%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405041&rft.eisbn_list=9781424405046&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4036015&rfr_iscdi=true |