Generating parity check equations for bounded-distance iterative erasure decoding

A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hollmann, H.D.L., Tolhuizen, L.M.G.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue
container_start_page 514
container_title
container_volume
creator Hollmann, H.D.L.
Tolhuizen, L.M.G.M.
description A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r
doi_str_mv 10.1109/ISIT.2006.261769
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4036015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4036015</ieee_id><sourcerecordid>4036015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-7f90b988babd905b64839cead7532fd39d64cde3e39b21097585a545cc0efb223</originalsourceid><addsrcrecordid>eNpFj0lLA0EUhNsNjDF3wUv_gYmv9-mjBI0DAREjeAu9vNF2mYk9M0L-vYML1qWgPqqgCDljMGcM7EV1X63nHEDPuWZG2z1ywiSXEhRItk8mnClTlIyZg3-gHg__AFh1TGZd9wKjpJLc6gm5W2KD2fWpeaJbl1O_o-EZwyvFj2FM26ajdZupb4cmYixi6nrXBKSp_259Ih29GzLSiKGN48wpOardW4ezX5-Sh-ur9eKmWN0uq8Xlqkicmb4wtQVvy9I7Hy0or2UpbEAXjRK8jsJGLUNEgcJ6Pr43qlROSRUCYO05F1Ny_rObEHGzzend5d1GgtDAlPgC_LxUnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generating parity check equations for bounded-distance iterative erasure decoding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hollmann, H.D.L. ; Tolhuizen, L.M.G.M.</creator><creatorcontrib>Hollmann, H.D.L. ; Tolhuizen, L.M.G.M.</creatorcontrib><description>A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 142440505X</identifier><identifier>ISBN: 9781424405053</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 1424405041</identifier><identifier>EISBN: 9781424405046</identifier><identifier>DOI: 10.1109/ISIT.2006.261769</identifier><language>eng</language><publisher>IEEE</publisher><subject>binary erasure channel ; Differential equations ; Iterative algorithms ; Iterative decoding ; Laboratories ; Linear code ; Parity check codes ; stopping set</subject><ispartof>2006 IEEE International Symposium on Information Theory, 2006, p.514-517</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4036015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4036015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hollmann, H.D.L.</creatorcontrib><creatorcontrib>Tolhuizen, L.M.G.M.</creatorcontrib><title>Generating parity check equations for bounded-distance iterative erasure decoding</title><title>2006 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r</description><subject>binary erasure channel</subject><subject>Differential equations</subject><subject>Iterative algorithms</subject><subject>Iterative decoding</subject><subject>Laboratories</subject><subject>Linear code</subject><subject>Parity check codes</subject><subject>stopping set</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>142440505X</isbn><isbn>9781424405053</isbn><isbn>1424405041</isbn><isbn>9781424405046</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0lLA0EUhNsNjDF3wUv_gYmv9-mjBI0DAREjeAu9vNF2mYk9M0L-vYML1qWgPqqgCDljMGcM7EV1X63nHEDPuWZG2z1ywiSXEhRItk8mnClTlIyZg3-gHg__AFh1TGZd9wKjpJLc6gm5W2KD2fWpeaJbl1O_o-EZwyvFj2FM26ajdZupb4cmYixi6nrXBKSp_259Ih29GzLSiKGN48wpOardW4ezX5-Sh-ur9eKmWN0uq8Xlqkicmb4wtQVvy9I7Hy0or2UpbEAXjRK8jsJGLUNEgcJ6Pr43qlROSRUCYO05F1Ny_rObEHGzzend5d1GgtDAlPgC_LxUnA</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Hollmann, H.D.L.</creator><creator>Tolhuizen, L.M.G.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20060101</creationdate><title>Generating parity check equations for bounded-distance iterative erasure decoding</title><author>Hollmann, H.D.L. ; Tolhuizen, L.M.G.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-7f90b988babd905b64839cead7532fd39d64cde3e39b21097585a545cc0efb223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>binary erasure channel</topic><topic>Differential equations</topic><topic>Iterative algorithms</topic><topic>Iterative decoding</topic><topic>Laboratories</topic><topic>Linear code</topic><topic>Parity check codes</topic><topic>stopping set</topic><toplevel>online_resources</toplevel><creatorcontrib>Hollmann, H.D.L.</creatorcontrib><creatorcontrib>Tolhuizen, L.M.G.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hollmann, H.D.L.</au><au>Tolhuizen, L.M.G.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generating parity check equations for bounded-distance iterative erasure decoding</atitle><btitle>2006 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2006-01-01</date><risdate>2006</risdate><spage>514</spage><epage>517</epage><pages>514-517</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>142440505X</isbn><isbn>9781424405053</isbn><eisbn>1424405041</eisbn><eisbn>9781424405046</eisbn><abstract>A generic (r,m)-erasure correcting set is a collection of vectors in F 2 r which can be used to generate, for each binary linear code of codimension r, a collection of parity check equations that enables iterative decoding of all correctable erasure patterns of size at most m. That is to say, the only stopping sets of size at most m for the generated parity check equations are the erasure patterns for which there is more than one manner to fill in the erasures to obtain a codeword. We give an explicit construction of generic (r,m)-erasure correcting sets of cardinality Sigma i=0 m-1 ( i r-1 ). Using a random-coding-like argument, we show that for fixed m, the minimum size of a generic (r,m)-erasure correcting set is linear in r</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2006.261769</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2006 IEEE International Symposium on Information Theory, 2006, p.514-517
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_4036015
source IEEE Electronic Library (IEL) Conference Proceedings
subjects binary erasure channel
Differential equations
Iterative algorithms
Iterative decoding
Laboratories
Linear code
Parity check codes
stopping set
title Generating parity check equations for bounded-distance iterative erasure decoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generating%20parity%20check%20equations%20for%20bounded-distance%20iterative%20erasure%20decoding&rft.btitle=2006%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Hollmann,%20H.D.L.&rft.date=2006-01-01&rft.spage=514&rft.epage=517&rft.pages=514-517&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=142440505X&rft.isbn_list=9781424405053&rft_id=info:doi/10.1109/ISIT.2006.261769&rft_dat=%3Cieee_6IE%3E4036015%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405041&rft.eisbn_list=9781424405046&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4036015&rfr_iscdi=true