Remote Sensing Images Classification/Data Fusion Using Distance Weighted Multiple Classifiers Systems

For a multiple classifiers system, a weighting policy is applied to fuse knowledge acquired by classifiers to arrive at an overall decision that is supposedly superior to that attainable by any one of them acting alone. The distance measured between the classifier output and its desired output can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yu-Chang Tzeng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue
container_start_page 56
container_title
container_volume
creator Yu-Chang Tzeng
description For a multiple classifiers system, a weighting policy is applied to fuse knowledge acquired by classifiers to arrive at an overall decision that is supposedly superior to that attainable by any one of them acting alone. The distance measured between the classifier output and its desired output can be used as a classifier performance indicator. By adopting this performance indicator, the rms and average distance weighted multiple classifiers systems are proposed in this paper. The classification performances of utilizing various multiple classifiers systems to the application of remote sensing image classification are demonstrated and compared. Experimental results show that the classification accuracy is considerably improved by making use of the multiple classifiers system. In addition, the multiple classifiers systems of using distance weighted algorithms are superior to those of using the conventional bagging and boosting algorithms. Moreover, average distance weighted multiple classifiers system outperform rms distance weighted multiple classifiers system slightly
doi_str_mv 10.1109/PDCAT.2006.93
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4032150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4032150</ieee_id><sourcerecordid>4032150</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-89b50d1547a1860e2124729660eb5c365fd146db69ae6768d9db3816f9039d453</originalsourceid><addsrcrecordid>eNo9jzFPwzAUhC0BEqV0ZGLxH0jrZ8d2PFYpLZWKQLQVY-XEL8EoSavYHfrviQBxy33D3UlHyAOwKQAzs7dFPt9NOWNqasQVuWNaGcm1UHBNRlxok0gh-S2ZhPDFBgkjjYERwXdsjxHpFrvgu5quW1tjoHljQ_CVL230x262sNHS5TkMTPc_uYUP0XYl0g_09WdER1_OTfSnBv-72Ae6vYSIbbgnN5VtAk7-fEz2y6dd_pxsXlfrfL5JPGgZk8wUkjmQqbaQKYYceKq5UQMWshRKVg5S5QplLCqtMmdcITJQlRn-uFSKMXn83fWIeDj1vrX95ZAywUEy8Q1GXlWE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Remote Sensing Images Classification/Data Fusion Using Distance Weighted Multiple Classifiers Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yu-Chang Tzeng</creator><creatorcontrib>Yu-Chang Tzeng</creatorcontrib><description>For a multiple classifiers system, a weighting policy is applied to fuse knowledge acquired by classifiers to arrive at an overall decision that is supposedly superior to that attainable by any one of them acting alone. The distance measured between the classifier output and its desired output can be used as a classifier performance indicator. By adopting this performance indicator, the rms and average distance weighted multiple classifiers systems are proposed in this paper. The classification performances of utilizing various multiple classifiers systems to the application of remote sensing image classification are demonstrated and compared. Experimental results show that the classification accuracy is considerably improved by making use of the multiple classifiers system. In addition, the multiple classifiers systems of using distance weighted algorithms are superior to those of using the conventional bagging and boosting algorithms. Moreover, average distance weighted multiple classifiers system outperform rms distance weighted multiple classifiers system slightly</description><identifier>ISSN: 2379-5352</identifier><identifier>ISBN: 0769527361</identifier><identifier>ISBN: 9780769527369</identifier><identifier>DOI: 10.1109/PDCAT.2006.93</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bagging ; Boosting ; Data engineering ; Fuses ; Image classification ; Iterative algorithms ; Mathematical model ; Remote sensing ; Training data ; Voting</subject><ispartof>2006 Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'06), 2006, p.56-60</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4032150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4032150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu-Chang Tzeng</creatorcontrib><title>Remote Sensing Images Classification/Data Fusion Using Distance Weighted Multiple Classifiers Systems</title><title>2006 Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'06)</title><addtitle>PDCAT</addtitle><description>For a multiple classifiers system, a weighting policy is applied to fuse knowledge acquired by classifiers to arrive at an overall decision that is supposedly superior to that attainable by any one of them acting alone. The distance measured between the classifier output and its desired output can be used as a classifier performance indicator. By adopting this performance indicator, the rms and average distance weighted multiple classifiers systems are proposed in this paper. The classification performances of utilizing various multiple classifiers systems to the application of remote sensing image classification are demonstrated and compared. Experimental results show that the classification accuracy is considerably improved by making use of the multiple classifiers system. In addition, the multiple classifiers systems of using distance weighted algorithms are superior to those of using the conventional bagging and boosting algorithms. Moreover, average distance weighted multiple classifiers system outperform rms distance weighted multiple classifiers system slightly</description><subject>Bagging</subject><subject>Boosting</subject><subject>Data engineering</subject><subject>Fuses</subject><subject>Image classification</subject><subject>Iterative algorithms</subject><subject>Mathematical model</subject><subject>Remote sensing</subject><subject>Training data</subject><subject>Voting</subject><issn>2379-5352</issn><isbn>0769527361</isbn><isbn>9780769527369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jzFPwzAUhC0BEqV0ZGLxH0jrZ8d2PFYpLZWKQLQVY-XEL8EoSavYHfrviQBxy33D3UlHyAOwKQAzs7dFPt9NOWNqasQVuWNaGcm1UHBNRlxok0gh-S2ZhPDFBgkjjYERwXdsjxHpFrvgu5quW1tjoHljQ_CVL230x262sNHS5TkMTPc_uYUP0XYl0g_09WdER1_OTfSnBv-72Ae6vYSIbbgnN5VtAk7-fEz2y6dd_pxsXlfrfL5JPGgZk8wUkjmQqbaQKYYceKq5UQMWshRKVg5S5QplLCqtMmdcITJQlRn-uFSKMXn83fWIeDj1vrX95ZAywUEy8Q1GXlWE</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Yu-Chang Tzeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Remote Sensing Images Classification/Data Fusion Using Distance Weighted Multiple Classifiers Systems</title><author>Yu-Chang Tzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-89b50d1547a1860e2124729660eb5c365fd146db69ae6768d9db3816f9039d453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bagging</topic><topic>Boosting</topic><topic>Data engineering</topic><topic>Fuses</topic><topic>Image classification</topic><topic>Iterative algorithms</topic><topic>Mathematical model</topic><topic>Remote sensing</topic><topic>Training data</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu-Chang Tzeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu-Chang Tzeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Remote Sensing Images Classification/Data Fusion Using Distance Weighted Multiple Classifiers Systems</atitle><btitle>2006 Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'06)</btitle><stitle>PDCAT</stitle><date>2006-12</date><risdate>2006</risdate><spage>56</spage><epage>60</epage><pages>56-60</pages><issn>2379-5352</issn><isbn>0769527361</isbn><isbn>9780769527369</isbn><abstract>For a multiple classifiers system, a weighting policy is applied to fuse knowledge acquired by classifiers to arrive at an overall decision that is supposedly superior to that attainable by any one of them acting alone. The distance measured between the classifier output and its desired output can be used as a classifier performance indicator. By adopting this performance indicator, the rms and average distance weighted multiple classifiers systems are proposed in this paper. The classification performances of utilizing various multiple classifiers systems to the application of remote sensing image classification are demonstrated and compared. Experimental results show that the classification accuracy is considerably improved by making use of the multiple classifiers system. In addition, the multiple classifiers systems of using distance weighted algorithms are superior to those of using the conventional bagging and boosting algorithms. Moreover, average distance weighted multiple classifiers system outperform rms distance weighted multiple classifiers system slightly</abstract><pub>IEEE</pub><doi>10.1109/PDCAT.2006.93</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-5352
ispartof 2006 Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'06), 2006, p.56-60
issn 2379-5352
language eng
recordid cdi_ieee_primary_4032150
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bagging
Boosting
Data engineering
Fuses
Image classification
Iterative algorithms
Mathematical model
Remote sensing
Training data
Voting
title Remote Sensing Images Classification/Data Fusion Using Distance Weighted Multiple Classifiers Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Remote%20Sensing%20Images%20Classification/Data%20Fusion%20Using%20Distance%20Weighted%20Multiple%20Classifiers%20Systems&rft.btitle=2006%20Seventh%20International%20Conference%20on%20Parallel%20and%20Distributed%20Computing,%20Applications%20and%20Technologies%20(PDCAT'06)&rft.au=Yu-Chang%20Tzeng&rft.date=2006-12&rft.spage=56&rft.epage=60&rft.pages=56-60&rft.issn=2379-5352&rft.isbn=0769527361&rft.isbn_list=9780769527369&rft_id=info:doi/10.1109/PDCAT.2006.93&rft_dat=%3Cieee_6IE%3E4032150%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4032150&rfr_iscdi=true