On-Line Mapping of In-Field Defects in Image Sensor Arrays

Continued increase in complexity of digital image sensors means that defects are more likely to develop in the field, but little concrete information is available on in-field defect growth. This paper presents an algorithm to help quantify the problem by identifying defects and potentially tracking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dudas, J., Jung, C., Wu, L., Chapman, G.H., Koren, I., Koren, Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue
container_start_page 439
container_title
container_volume
creator Dudas, J.
Jung, C.
Wu, L.
Chapman, G.H.
Koren, I.
Koren, Z.
description Continued increase in complexity of digital image sensors means that defects are more likely to develop in the field, but little concrete information is available on in-field defect growth. This paper presents an algorithm to help quantify the problem by identifying defects and potentially tracking defect growth. Building on previous research, this technique is extended to utilize a more realistic defect model suitable for analyzing real-world camera systems. Monte Carlo simulations show that abnormal sensitivity defects are successfully detected by analyzing only 40 typical photographs. Experimentation also indicates that this technique can be applied to imagers with up to 4% defect density, and that noisy images can be diagnosed successfully with only a small reduction in accuracy. Extension to colour imagers has been accomplished through independent analysis of image colour planes
doi_str_mv 10.1109/DFT.2006.48
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4030956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4030956</ieee_id><sourcerecordid>4030956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bc631f1fc1c30932f3ac2f0157154ceee7ff97ee7284e8cb0c793b3c4981f253</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC0eEqF0YmTxDzhc-_oRs1UtgUhBHcjAVjnGrozaNIq79O-JBGc5y9Eh5JFDyTnY503dlQJAl7K6IoVAY5ixWl-TezDaKmFAf92QgisFTBkj78gy5x-YQYtWY0FetgNr0xDohxvHNOzpKdJmYHUKh2-6CTH4c6ZpoM3R7QP9DEM-TXQ1Te6SH8htdIcclv9ekK5-7dbvrN2-NetVyxI36sx6r5FHHj33CBZFROdFBK4MV9KHEEyM1swSlQyV78Ebiz16aSsehcIFefrbprndjVM6uumykzDPlMZfYOFGYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On-Line Mapping of In-Field Defects in Image Sensor Arrays</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dudas, J. ; Jung, C. ; Wu, L. ; Chapman, G.H. ; Koren, I. ; Koren, Z.</creator><creatorcontrib>Dudas, J. ; Jung, C. ; Wu, L. ; Chapman, G.H. ; Koren, I. ; Koren, Z.</creatorcontrib><description>Continued increase in complexity of digital image sensors means that defects are more likely to develop in the field, but little concrete information is available on in-field defect growth. This paper presents an algorithm to help quantify the problem by identifying defects and potentially tracking defect growth. Building on previous research, this technique is extended to utilize a more realistic defect model suitable for analyzing real-world camera systems. Monte Carlo simulations show that abnormal sensitivity defects are successfully detected by analyzing only 40 typical photographs. Experimentation also indicates that this technique can be applied to imagers with up to 4% defect density, and that noisy images can be diagnosed successfully with only a small reduction in accuracy. Extension to colour imagers has been accomplished through independent analysis of image colour planes</description><identifier>ISSN: 1550-5774</identifier><identifier>ISBN: 076952706X</identifier><identifier>ISBN: 9780769527062</identifier><identifier>EISSN: 2377-7966</identifier><identifier>DOI: 10.1109/DFT.2006.48</identifier><language>eng</language><publisher>IEEE</publisher><subject>Digital cameras ; Digital images ; Fault detection ; Fault diagnosis ; Image analysis ; Image color analysis ; Image sensors ; Infrared image sensors ; Pixel ; Sensor arrays</subject><ispartof>2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, p.439-447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4030956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4030956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dudas, J.</creatorcontrib><creatorcontrib>Jung, C.</creatorcontrib><creatorcontrib>Wu, L.</creatorcontrib><creatorcontrib>Chapman, G.H.</creatorcontrib><creatorcontrib>Koren, I.</creatorcontrib><creatorcontrib>Koren, Z.</creatorcontrib><title>On-Line Mapping of In-Field Defects in Image Sensor Arrays</title><title>2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems</title><addtitle>DFTVS</addtitle><description>Continued increase in complexity of digital image sensors means that defects are more likely to develop in the field, but little concrete information is available on in-field defect growth. This paper presents an algorithm to help quantify the problem by identifying defects and potentially tracking defect growth. Building on previous research, this technique is extended to utilize a more realistic defect model suitable for analyzing real-world camera systems. Monte Carlo simulations show that abnormal sensitivity defects are successfully detected by analyzing only 40 typical photographs. Experimentation also indicates that this technique can be applied to imagers with up to 4% defect density, and that noisy images can be diagnosed successfully with only a small reduction in accuracy. Extension to colour imagers has been accomplished through independent analysis of image colour planes</description><subject>Digital cameras</subject><subject>Digital images</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>Image sensors</subject><subject>Infrared image sensors</subject><subject>Pixel</subject><subject>Sensor arrays</subject><issn>1550-5774</issn><issn>2377-7966</issn><isbn>076952706X</isbn><isbn>9780769527062</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC0eEqF0YmTxDzhc-_oRs1UtgUhBHcjAVjnGrozaNIq79O-JBGc5y9Eh5JFDyTnY503dlQJAl7K6IoVAY5ixWl-TezDaKmFAf92QgisFTBkj78gy5x-YQYtWY0FetgNr0xDohxvHNOzpKdJmYHUKh2-6CTH4c6ZpoM3R7QP9DEM-TXQ1Te6SH8htdIcclv9ekK5-7dbvrN2-NetVyxI36sx6r5FHHj33CBZFROdFBK4MV9KHEEyM1swSlQyV78Ebiz16aSsehcIFefrbprndjVM6uumykzDPlMZfYOFGYg</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Dudas, J.</creator><creator>Jung, C.</creator><creator>Wu, L.</creator><creator>Chapman, G.H.</creator><creator>Koren, I.</creator><creator>Koren, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>On-Line Mapping of In-Field Defects in Image Sensor Arrays</title><author>Dudas, J. ; Jung, C. ; Wu, L. ; Chapman, G.H. ; Koren, I. ; Koren, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bc631f1fc1c30932f3ac2f0157154ceee7ff97ee7284e8cb0c793b3c4981f253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Digital cameras</topic><topic>Digital images</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>Image sensors</topic><topic>Infrared image sensors</topic><topic>Pixel</topic><topic>Sensor arrays</topic><toplevel>online_resources</toplevel><creatorcontrib>Dudas, J.</creatorcontrib><creatorcontrib>Jung, C.</creatorcontrib><creatorcontrib>Wu, L.</creatorcontrib><creatorcontrib>Chapman, G.H.</creatorcontrib><creatorcontrib>Koren, I.</creatorcontrib><creatorcontrib>Koren, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dudas, J.</au><au>Jung, C.</au><au>Wu, L.</au><au>Chapman, G.H.</au><au>Koren, I.</au><au>Koren, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On-Line Mapping of In-Field Defects in Image Sensor Arrays</atitle><btitle>2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems</btitle><stitle>DFTVS</stitle><date>2006-10</date><risdate>2006</risdate><spage>439</spage><epage>447</epage><pages>439-447</pages><issn>1550-5774</issn><eissn>2377-7966</eissn><isbn>076952706X</isbn><isbn>9780769527062</isbn><abstract>Continued increase in complexity of digital image sensors means that defects are more likely to develop in the field, but little concrete information is available on in-field defect growth. This paper presents an algorithm to help quantify the problem by identifying defects and potentially tracking defect growth. Building on previous research, this technique is extended to utilize a more realistic defect model suitable for analyzing real-world camera systems. Monte Carlo simulations show that abnormal sensitivity defects are successfully detected by analyzing only 40 typical photographs. Experimentation also indicates that this technique can be applied to imagers with up to 4% defect density, and that noisy images can be diagnosed successfully with only a small reduction in accuracy. Extension to colour imagers has been accomplished through independent analysis of image colour planes</abstract><pub>IEEE</pub><doi>10.1109/DFT.2006.48</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5774
ispartof 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, p.439-447
issn 1550-5774
2377-7966
language eng
recordid cdi_ieee_primary_4030956
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Digital cameras
Digital images
Fault detection
Fault diagnosis
Image analysis
Image color analysis
Image sensors
Infrared image sensors
Pixel
Sensor arrays
title On-Line Mapping of In-Field Defects in Image Sensor Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On-Line%20Mapping%20of%20In-Field%20Defects%20in%20Image%20Sensor%20Arrays&rft.btitle=2006%2021st%20IEEE%20International%20Symposium%20on%20Defect%20and%20Fault%20Tolerance%20in%20VLSI%20Systems&rft.au=Dudas,%20J.&rft.date=2006-10&rft.spage=439&rft.epage=447&rft.pages=439-447&rft.issn=1550-5774&rft.eissn=2377-7966&rft.isbn=076952706X&rft.isbn_list=9780769527062&rft_id=info:doi/10.1109/DFT.2006.48&rft_dat=%3Cieee_6IE%3E4030956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4030956&rfr_iscdi=true