An Alternative Approach to Estimate Load Torque in Industrial Environment Using Neural Networks

The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goedtel, A., da Silva, I.N., Serni, P.J.A., Flauzino, R.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Goedtel, A.
da Silva, I.N.
Serni, P.J.A.
Flauzino, R.A.
description The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for estimating the load torque applied to the induction motor shaft rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach
doi_str_mv 10.1109/ICIEA.2006.257362
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4025963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4025963</ieee_id><sourcerecordid>4025963</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1413bed5c1eb70fd2253400932641f4c90806fb61705f0b893935ed11a25a9293</originalsourceid><addsrcrecordid>eNpFjsFKxDAURSMiqON8gLjJD0x9SZq2WZahOoVh3FRwV9L2VaOdtCbpiH9vQcG7uRwOXC4htwwixkDdl9uyyCMOkERcpiLhZ-Qa0gyEkix-Of8HwS7J2vt3WLIwZOkVqXNL8yGgszqYE9J8mtyo2zcaRlr4YI46IN2PuqPV6D5npMbS0nazD87ogRb2ZNxoj2gDffbGvtIDzm4RBwxfo_vwN-Si14PH9V-vSPVQVNvdZv_0WG7z_cYoCBsWM9FgJ1uGTQp9x7kUMYASPIlZH7cKMkj6JmEpyB6aTAklJHaMaS614kqsyN3vrEHEenLLb_ddx8ClSoT4AbOmU8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Alternative Approach to Estimate Load Torque in Industrial Environment Using Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goedtel, A. ; da Silva, I.N. ; Serni, P.J.A. ; Flauzino, R.A.</creator><creatorcontrib>Goedtel, A. ; da Silva, I.N. ; Serni, P.J.A. ; Flauzino, R.A.</creatorcontrib><description>The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for estimating the load torque applied to the induction motor shaft rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach</description><identifier>ISBN: 0780395131</identifier><identifier>ISBN: 9780780395138</identifier><identifier>EISBN: 078039514X</identifier><identifier>EISBN: 9780780395145</identifier><identifier>DOI: 10.1109/ICIEA.2006.257362</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Differential equations ; Electrical equipment industry ; Induction motors ; Industrial control ; Neural networks ; Shafts ; State estimation ; Steady-state ; Torque measurement</subject><ispartof>2006 1ST IEEE Conference on Industrial Electronics and Applications, 2006, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4025963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4025963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goedtel, A.</creatorcontrib><creatorcontrib>da Silva, I.N.</creatorcontrib><creatorcontrib>Serni, P.J.A.</creatorcontrib><creatorcontrib>Flauzino, R.A.</creatorcontrib><title>An Alternative Approach to Estimate Load Torque in Industrial Environment Using Neural Networks</title><title>2006 1ST IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for estimating the load torque applied to the induction motor shaft rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach</description><subject>Artificial neural networks</subject><subject>Differential equations</subject><subject>Electrical equipment industry</subject><subject>Induction motors</subject><subject>Industrial control</subject><subject>Neural networks</subject><subject>Shafts</subject><subject>State estimation</subject><subject>Steady-state</subject><subject>Torque measurement</subject><isbn>0780395131</isbn><isbn>9780780395138</isbn><isbn>078039514X</isbn><isbn>9780780395145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjsFKxDAURSMiqON8gLjJD0x9SZq2WZahOoVh3FRwV9L2VaOdtCbpiH9vQcG7uRwOXC4htwwixkDdl9uyyCMOkERcpiLhZ-Qa0gyEkix-Of8HwS7J2vt3WLIwZOkVqXNL8yGgszqYE9J8mtyo2zcaRlr4YI46IN2PuqPV6D5npMbS0nazD87ogRb2ZNxoj2gDffbGvtIDzm4RBwxfo_vwN-Si14PH9V-vSPVQVNvdZv_0WG7z_cYoCBsWM9FgJ1uGTQp9x7kUMYASPIlZH7cKMkj6JmEpyB6aTAklJHaMaS614kqsyN3vrEHEenLLb_ddx8ClSoT4AbOmU8g</recordid><startdate>200605</startdate><enddate>200605</enddate><creator>Goedtel, A.</creator><creator>da Silva, I.N.</creator><creator>Serni, P.J.A.</creator><creator>Flauzino, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200605</creationdate><title>An Alternative Approach to Estimate Load Torque in Industrial Environment Using Neural Networks</title><author>Goedtel, A. ; da Silva, I.N. ; Serni, P.J.A. ; Flauzino, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1413bed5c1eb70fd2253400932641f4c90806fb61705f0b893935ed11a25a9293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial neural networks</topic><topic>Differential equations</topic><topic>Electrical equipment industry</topic><topic>Induction motors</topic><topic>Industrial control</topic><topic>Neural networks</topic><topic>Shafts</topic><topic>State estimation</topic><topic>Steady-state</topic><topic>Torque measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Goedtel, A.</creatorcontrib><creatorcontrib>da Silva, I.N.</creatorcontrib><creatorcontrib>Serni, P.J.A.</creatorcontrib><creatorcontrib>Flauzino, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goedtel, A.</au><au>da Silva, I.N.</au><au>Serni, P.J.A.</au><au>Flauzino, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Alternative Approach to Estimate Load Torque in Industrial Environment Using Neural Networks</atitle><btitle>2006 1ST IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2006-05</date><risdate>2006</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>0780395131</isbn><isbn>9780780395138</isbn><eisbn>078039514X</eisbn><eisbn>9780780395145</eisbn><abstract>The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for estimating the load torque applied to the induction motor shaft rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2006.257362</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780395131
ispartof 2006 1ST IEEE Conference on Industrial Electronics and Applications, 2006, p.1-6
issn
language eng
recordid cdi_ieee_primary_4025963
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Differential equations
Electrical equipment industry
Induction motors
Industrial control
Neural networks
Shafts
State estimation
Steady-state
Torque measurement
title An Alternative Approach to Estimate Load Torque in Industrial Environment Using Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Alternative%20Approach%20to%20Estimate%20Load%20Torque%20in%20Industrial%20Environment%20Using%20Neural%20Networks&rft.btitle=2006%201ST%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Goedtel,%20A.&rft.date=2006-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=0780395131&rft.isbn_list=9780780395138&rft_id=info:doi/10.1109/ICIEA.2006.257362&rft_dat=%3Cieee_6IE%3E4025963%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=078039514X&rft.eisbn_list=9780780395145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4025963&rfr_iscdi=true