Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm
This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with m...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1034 |
---|---|
container_issue | |
container_start_page | 1029 |
container_title | |
container_volume | 2 |
creator | Xing, Zong-Yi Hou, Yuan-Long Tong, Zhong-Zhi Jia, Li-Min |
description | This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity |
doi_str_mv | 10.1109/ISDA.2006.253753 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4021805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4021805</ieee_id><sourcerecordid>4021805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-c0cafc34e58b9abefa99adee3f422b29b6228230f52a0814b25198a6416dde6c3</originalsourceid><addsrcrecordid>eNo9jE1PAjEYhBs_EhG5m3jpH1hs335se8RVkATjAfVKut23WrKwZltM4NdL1DiXyTyTGUKuORtzzuztfHk_GQNjegxKlEqckAFwLYuSK35KLlmprQIFxpz9F1JckFFKa3aUsEoqPSBvVbdNud_5HLst7QKd7g6HPa1al1IM0bsfvtynjBt65xI29Jifdm2ORVev8bj7QjrDLebo6aR97_qYPzZX5Dy4NuHoz4fkdfrwUj0Wi-fZvJosigi8zIVn3gUvJCpTW1djcNa6BlEECVCDrTWAAcGCAscMlzUobo3TkuumQe3FkNz8_kZEXH32ceP6_Uoy4IYp8Q0QKFQC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xing, Zong-Yi ; Hou, Yuan-Long ; Tong, Zhong-Zhi ; Jia, Li-Min</creator><creatorcontrib>Xing, Zong-Yi ; Hou, Yuan-Long ; Tong, Zhong-Zhi ; Jia, Li-Min</creatorcontrib><description>This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity</description><identifier>ISSN: 2164-7143</identifier><identifier>ISBN: 0769525288</identifier><identifier>ISBN: 9780769525280</identifier><identifier>EISSN: 2164-7151</identifier><identifier>DOI: 10.1109/ISDA.2006.253753</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Humans ; Iris ; Mechanical engineering ; Pattern classification ; Transportation</subject><ispartof>Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.2, p.1029-1034</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4021805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4021805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Zong-Yi</creatorcontrib><creatorcontrib>Hou, Yuan-Long</creatorcontrib><creatorcontrib>Tong, Zhong-Zhi</creatorcontrib><creatorcontrib>Jia, Li-Min</creatorcontrib><title>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</title><title>Sixth International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity</description><subject>Constraint optimization</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Iris</subject><subject>Mechanical engineering</subject><subject>Pattern classification</subject><subject>Transportation</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>0769525288</isbn><isbn>9780769525280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jE1PAjEYhBs_EhG5m3jpH1hs335se8RVkATjAfVKut23WrKwZltM4NdL1DiXyTyTGUKuORtzzuztfHk_GQNjegxKlEqckAFwLYuSK35KLlmprQIFxpz9F1JckFFKa3aUsEoqPSBvVbdNud_5HLst7QKd7g6HPa1al1IM0bsfvtynjBt65xI29Jifdm2ORVev8bj7QjrDLebo6aR97_qYPzZX5Dy4NuHoz4fkdfrwUj0Wi-fZvJosigi8zIVn3gUvJCpTW1djcNa6BlEECVCDrTWAAcGCAscMlzUobo3TkuumQe3FkNz8_kZEXH32ceP6_Uoy4IYp8Q0QKFQC</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Xing, Zong-Yi</creator><creator>Hou, Yuan-Long</creator><creator>Tong, Zhong-Zhi</creator><creator>Jia, Li-Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20060101</creationdate><title>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</title><author>Xing, Zong-Yi ; Hou, Yuan-Long ; Tong, Zhong-Zhi ; Jia, Li-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-c0cafc34e58b9abefa99adee3f422b29b6228230f52a0814b25198a6416dde6c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Constraint optimization</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Iris</topic><topic>Mechanical engineering</topic><topic>Pattern classification</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zong-Yi</creatorcontrib><creatorcontrib>Hou, Yuan-Long</creatorcontrib><creatorcontrib>Tong, Zhong-Zhi</creatorcontrib><creatorcontrib>Jia, Li-Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Zong-Yi</au><au>Hou, Yuan-Long</au><au>Tong, Zhong-Zhi</au><au>Jia, Li-Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</atitle><btitle>Sixth International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2006-01-01</date><risdate>2006</risdate><volume>2</volume><spage>1029</spage><epage>1034</epage><pages>1029-1034</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><isbn>0769525288</isbn><isbn>9780769525280</isbn><abstract>This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2006.253753</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-7143 |
ispartof | Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.2, p.1029-1034 |
issn | 2164-7143 2164-7151 |
language | eng |
recordid | cdi_ieee_primary_4021805 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Constraint optimization Fuzzy sets Fuzzy systems Genetic algorithms Humans Iris Mechanical engineering Pattern classification Transportation |
title | Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Construction%20of%20Fuzzy%20Classification%20System%20Based%20on%20Multi-objective%20Genetic%20Algorithm&rft.btitle=Sixth%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Xing,%20Zong-Yi&rft.date=2006-01-01&rft.volume=2&rft.spage=1029&rft.epage=1034&rft.pages=1029-1034&rft.issn=2164-7143&rft.eissn=2164-7151&rft.isbn=0769525288&rft.isbn_list=9780769525280&rft_id=info:doi/10.1109/ISDA.2006.253753&rft_dat=%3Cieee_6IE%3E4021805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4021805&rfr_iscdi=true |