Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm

This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xing, Zong-Yi, Hou, Yuan-Long, Tong, Zhong-Zhi, Jia, Li-Min
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1034
container_issue
container_start_page 1029
container_title
container_volume 2
creator Xing, Zong-Yi
Hou, Yuan-Long
Tong, Zhong-Zhi
Jia, Li-Min
description This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity
doi_str_mv 10.1109/ISDA.2006.253753
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4021805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4021805</ieee_id><sourcerecordid>4021805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-c0cafc34e58b9abefa99adee3f422b29b6228230f52a0814b25198a6416dde6c3</originalsourceid><addsrcrecordid>eNo9jE1PAjEYhBs_EhG5m3jpH1hs335se8RVkATjAfVKut23WrKwZltM4NdL1DiXyTyTGUKuORtzzuztfHk_GQNjegxKlEqckAFwLYuSK35KLlmprQIFxpz9F1JckFFKa3aUsEoqPSBvVbdNud_5HLst7QKd7g6HPa1al1IM0bsfvtynjBt65xI29Jifdm2ORVev8bj7QjrDLebo6aR97_qYPzZX5Dy4NuHoz4fkdfrwUj0Wi-fZvJosigi8zIVn3gUvJCpTW1djcNa6BlEECVCDrTWAAcGCAscMlzUobo3TkuumQe3FkNz8_kZEXH32ceP6_Uoy4IYp8Q0QKFQC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xing, Zong-Yi ; Hou, Yuan-Long ; Tong, Zhong-Zhi ; Jia, Li-Min</creator><creatorcontrib>Xing, Zong-Yi ; Hou, Yuan-Long ; Tong, Zhong-Zhi ; Jia, Li-Min</creatorcontrib><description>This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity</description><identifier>ISSN: 2164-7143</identifier><identifier>ISBN: 0769525288</identifier><identifier>ISBN: 9780769525280</identifier><identifier>EISSN: 2164-7151</identifier><identifier>DOI: 10.1109/ISDA.2006.253753</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Humans ; Iris ; Mechanical engineering ; Pattern classification ; Transportation</subject><ispartof>Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.2, p.1029-1034</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4021805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4021805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Zong-Yi</creatorcontrib><creatorcontrib>Hou, Yuan-Long</creatorcontrib><creatorcontrib>Tong, Zhong-Zhi</creatorcontrib><creatorcontrib>Jia, Li-Min</creatorcontrib><title>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</title><title>Sixth International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity</description><subject>Constraint optimization</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Iris</subject><subject>Mechanical engineering</subject><subject>Pattern classification</subject><subject>Transportation</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>0769525288</isbn><isbn>9780769525280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jE1PAjEYhBs_EhG5m3jpH1hs335se8RVkATjAfVKut23WrKwZltM4NdL1DiXyTyTGUKuORtzzuztfHk_GQNjegxKlEqckAFwLYuSK35KLlmprQIFxpz9F1JckFFKa3aUsEoqPSBvVbdNud_5HLst7QKd7g6HPa1al1IM0bsfvtynjBt65xI29Jifdm2ORVev8bj7QjrDLebo6aR97_qYPzZX5Dy4NuHoz4fkdfrwUj0Wi-fZvJosigi8zIVn3gUvJCpTW1djcNa6BlEECVCDrTWAAcGCAscMlzUobo3TkuumQe3FkNz8_kZEXH32ceP6_Uoy4IYp8Q0QKFQC</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Xing, Zong-Yi</creator><creator>Hou, Yuan-Long</creator><creator>Tong, Zhong-Zhi</creator><creator>Jia, Li-Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20060101</creationdate><title>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</title><author>Xing, Zong-Yi ; Hou, Yuan-Long ; Tong, Zhong-Zhi ; Jia, Li-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-c0cafc34e58b9abefa99adee3f422b29b6228230f52a0814b25198a6416dde6c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Constraint optimization</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Iris</topic><topic>Mechanical engineering</topic><topic>Pattern classification</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zong-Yi</creatorcontrib><creatorcontrib>Hou, Yuan-Long</creatorcontrib><creatorcontrib>Tong, Zhong-Zhi</creatorcontrib><creatorcontrib>Jia, Li-Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Zong-Yi</au><au>Hou, Yuan-Long</au><au>Tong, Zhong-Zhi</au><au>Jia, Li-Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm</atitle><btitle>Sixth International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2006-01-01</date><risdate>2006</risdate><volume>2</volume><spage>1029</spage><epage>1034</epage><pages>1029-1034</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><isbn>0769525288</isbn><isbn>9780769525280</isbn><abstract>This paper present a novel method based on multi-objective genetic algorithm to construct fuzzy classification system. First, in order to relieve the problem of "curse of dimensionality", a multi-objective genetic algorithm is used to accomplish feature selection and fuzzy partition with maximum classification performance and minimum number of features and minimum number of fuzzy rules, thus an initial fuzzy system is obtained. Then, a genetic algorithm is employed to select significant fuzzy rules with two objectives to achieve a compact fuzzy system. In order to improve the classification performance of the compact fuzzy system, a constrained genetic algorithm is utilized to optimize the parameters of the compact fuzzy system. The proposed approach is applied to the Iris and Wine benchmark problems, and the results show its validity</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2006.253753</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7143
ispartof Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.2, p.1029-1034
issn 2164-7143
2164-7151
language eng
recordid cdi_ieee_primary_4021805
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Constraint optimization
Fuzzy sets
Fuzzy systems
Genetic algorithms
Humans
Iris
Mechanical engineering
Pattern classification
Transportation
title Construction of Fuzzy Classification System Based on Multi-objective Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Construction%20of%20Fuzzy%20Classification%20System%20Based%20on%20Multi-objective%20Genetic%20Algorithm&rft.btitle=Sixth%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Xing,%20Zong-Yi&rft.date=2006-01-01&rft.volume=2&rft.spage=1029&rft.epage=1034&rft.pages=1029-1034&rft.issn=2164-7143&rft.eissn=2164-7151&rft.isbn=0769525288&rft.isbn_list=9780769525280&rft_id=info:doi/10.1109/ISDA.2006.253753&rft_dat=%3Cieee_6IE%3E4021805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4021805&rfr_iscdi=true