Study on Traffic Information Fusion Algorithm Based on Support Vector Machines

Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haihong Liu, Xiaoyuan Wang, Derong Tan, Lei Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue
container_start_page 183
container_title
container_volume 1
creator Haihong Liu
Xiaoyuan Wang
Derong Tan
Lei Wang
description Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance
doi_str_mv 10.1109/ISDA.2006.259
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4021432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4021432</ieee_id><sourcerecordid>4021432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-17d95dcbca8101ce51d1f8782a4c1795031bec3b4254ebf6f3be8bc012222cdc3</originalsourceid><addsrcrecordid>eNo9jz1PwzAYhC0-JErpyMSSP5Dg1x9JPIZCIVKBIYW1ct7Y1KhpIjsZ-u9JBeKWR7o7nXSE3AJNAKi6L6vHImGUpgmT6ozMGKQizkDCObmmWaokkyzPL_4Dwa_IIoRvOokrKWQ6I2_VMDbHqDtEG6-tdRiVB9v5Vg9u8lZjOKHYf3XeDbs2etDBNKd2NfZ954fo0-DQ-ehV484dTLghl1bvg1n8cU4-Vk-b5Uu8fn8ul8U6RgZqiCFrlGywRp0DBTQSGrB5ljMtEDIlKYfaIK8Fk8LUNrW8NnmNFNgkbJDPyd3vrjPGbHvvWu2PW0HZdJLxH80nT78</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haihong Liu ; Xiaoyuan Wang ; Derong Tan ; Lei Wang</creator><creatorcontrib>Haihong Liu ; Xiaoyuan Wang ; Derong Tan ; Lei Wang</creatorcontrib><description>Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance</description><identifier>ISSN: 2164-7143</identifier><identifier>ISBN: 0769525288</identifier><identifier>ISBN: 9780769525280</identifier><identifier>EISSN: 2164-7151</identifier><identifier>DOI: 10.1109/ISDA.2006.259</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feeds ; Learning systems ; Machine learning algorithms ; Object detection ; Pattern recognition ; Risk management ; Support vector machines ; Telecommunication traffic ; Testing ; Traffic control</subject><ispartof>Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.1, p.183-187</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-17d95dcbca8101ce51d1f8782a4c1795031bec3b4254ebf6f3be8bc012222cdc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4021432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4021432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haihong Liu</creatorcontrib><creatorcontrib>Xiaoyuan Wang</creatorcontrib><creatorcontrib>Derong Tan</creatorcontrib><creatorcontrib>Lei Wang</creatorcontrib><title>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</title><title>Sixth International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance</description><subject>Feeds</subject><subject>Learning systems</subject><subject>Machine learning algorithms</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>Risk management</subject><subject>Support vector machines</subject><subject>Telecommunication traffic</subject><subject>Testing</subject><subject>Traffic control</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>0769525288</isbn><isbn>9780769525280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jz1PwzAYhC0-JErpyMSSP5Dg1x9JPIZCIVKBIYW1ct7Y1KhpIjsZ-u9JBeKWR7o7nXSE3AJNAKi6L6vHImGUpgmT6ozMGKQizkDCObmmWaokkyzPL_4Dwa_IIoRvOokrKWQ6I2_VMDbHqDtEG6-tdRiVB9v5Vg9u8lZjOKHYf3XeDbs2etDBNKd2NfZ954fo0-DQ-ehV484dTLghl1bvg1n8cU4-Vk-b5Uu8fn8ul8U6RgZqiCFrlGywRp0DBTQSGrB5ljMtEDIlKYfaIK8Fk8LUNrW8NnmNFNgkbJDPyd3vrjPGbHvvWu2PW0HZdJLxH80nT78</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Haihong Liu</creator><creator>Xiaoyuan Wang</creator><creator>Derong Tan</creator><creator>Lei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</title><author>Haihong Liu ; Xiaoyuan Wang ; Derong Tan ; Lei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-17d95dcbca8101ce51d1f8782a4c1795031bec3b4254ebf6f3be8bc012222cdc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Feeds</topic><topic>Learning systems</topic><topic>Machine learning algorithms</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>Risk management</topic><topic>Support vector machines</topic><topic>Telecommunication traffic</topic><topic>Testing</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Haihong Liu</creatorcontrib><creatorcontrib>Xiaoyuan Wang</creatorcontrib><creatorcontrib>Derong Tan</creatorcontrib><creatorcontrib>Lei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haihong Liu</au><au>Xiaoyuan Wang</au><au>Derong Tan</au><au>Lei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</atitle><btitle>Sixth International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>183</spage><epage>187</epage><pages>183-187</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><isbn>0769525288</isbn><isbn>9780769525280</isbn><abstract>Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2006.259</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7143
ispartof Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.1, p.183-187
issn 2164-7143
2164-7151
language eng
recordid cdi_ieee_primary_4021432
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feeds
Learning systems
Machine learning algorithms
Object detection
Pattern recognition
Risk management
Support vector machines
Telecommunication traffic
Testing
Traffic control
title Study on Traffic Information Fusion Algorithm Based on Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20Traffic%20Information%20Fusion%20Algorithm%20Based%20on%20Support%20Vector%20Machines&rft.btitle=Sixth%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Haihong%20Liu&rft.date=2006-10&rft.volume=1&rft.spage=183&rft.epage=187&rft.pages=183-187&rft.issn=2164-7143&rft.eissn=2164-7151&rft.isbn=0769525288&rft.isbn_list=9780769525280&rft_id=info:doi/10.1109/ISDA.2006.259&rft_dat=%3Cieee_6IE%3E4021432%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4021432&rfr_iscdi=true