Study on Traffic Information Fusion Algorithm Based on Support Vector Machines
Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | |
container_start_page | 183 |
container_title | |
container_volume | 1 |
creator | Haihong Liu Xiaoyuan Wang Derong Tan Lei Wang |
description | Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance |
doi_str_mv | 10.1109/ISDA.2006.259 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4021432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4021432</ieee_id><sourcerecordid>4021432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-17d95dcbca8101ce51d1f8782a4c1795031bec3b4254ebf6f3be8bc012222cdc3</originalsourceid><addsrcrecordid>eNo9jz1PwzAYhC0-JErpyMSSP5Dg1x9JPIZCIVKBIYW1ct7Y1KhpIjsZ-u9JBeKWR7o7nXSE3AJNAKi6L6vHImGUpgmT6ozMGKQizkDCObmmWaokkyzPL_4Dwa_IIoRvOokrKWQ6I2_VMDbHqDtEG6-tdRiVB9v5Vg9u8lZjOKHYf3XeDbs2etDBNKd2NfZ954fo0-DQ-ehV484dTLghl1bvg1n8cU4-Vk-b5Uu8fn8ul8U6RgZqiCFrlGywRp0DBTQSGrB5ljMtEDIlKYfaIK8Fk8LUNrW8NnmNFNgkbJDPyd3vrjPGbHvvWu2PW0HZdJLxH80nT78</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haihong Liu ; Xiaoyuan Wang ; Derong Tan ; Lei Wang</creator><creatorcontrib>Haihong Liu ; Xiaoyuan Wang ; Derong Tan ; Lei Wang</creatorcontrib><description>Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance</description><identifier>ISSN: 2164-7143</identifier><identifier>ISBN: 0769525288</identifier><identifier>ISBN: 9780769525280</identifier><identifier>EISSN: 2164-7151</identifier><identifier>DOI: 10.1109/ISDA.2006.259</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feeds ; Learning systems ; Machine learning algorithms ; Object detection ; Pattern recognition ; Risk management ; Support vector machines ; Telecommunication traffic ; Testing ; Traffic control</subject><ispartof>Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.1, p.183-187</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-17d95dcbca8101ce51d1f8782a4c1795031bec3b4254ebf6f3be8bc012222cdc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4021432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4021432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haihong Liu</creatorcontrib><creatorcontrib>Xiaoyuan Wang</creatorcontrib><creatorcontrib>Derong Tan</creatorcontrib><creatorcontrib>Lei Wang</creatorcontrib><title>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</title><title>Sixth International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance</description><subject>Feeds</subject><subject>Learning systems</subject><subject>Machine learning algorithms</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>Risk management</subject><subject>Support vector machines</subject><subject>Telecommunication traffic</subject><subject>Testing</subject><subject>Traffic control</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>0769525288</isbn><isbn>9780769525280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jz1PwzAYhC0-JErpyMSSP5Dg1x9JPIZCIVKBIYW1ct7Y1KhpIjsZ-u9JBeKWR7o7nXSE3AJNAKi6L6vHImGUpgmT6ozMGKQizkDCObmmWaokkyzPL_4Dwa_IIoRvOokrKWQ6I2_VMDbHqDtEG6-tdRiVB9v5Vg9u8lZjOKHYf3XeDbs2etDBNKd2NfZ954fo0-DQ-ehV484dTLghl1bvg1n8cU4-Vk-b5Uu8fn8ul8U6RgZqiCFrlGywRp0DBTQSGrB5ljMtEDIlKYfaIK8Fk8LUNrW8NnmNFNgkbJDPyd3vrjPGbHvvWu2PW0HZdJLxH80nT78</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Haihong Liu</creator><creator>Xiaoyuan Wang</creator><creator>Derong Tan</creator><creator>Lei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</title><author>Haihong Liu ; Xiaoyuan Wang ; Derong Tan ; Lei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-17d95dcbca8101ce51d1f8782a4c1795031bec3b4254ebf6f3be8bc012222cdc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Feeds</topic><topic>Learning systems</topic><topic>Machine learning algorithms</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>Risk management</topic><topic>Support vector machines</topic><topic>Telecommunication traffic</topic><topic>Testing</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Haihong Liu</creatorcontrib><creatorcontrib>Xiaoyuan Wang</creatorcontrib><creatorcontrib>Derong Tan</creatorcontrib><creatorcontrib>Lei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haihong Liu</au><au>Xiaoyuan Wang</au><au>Derong Tan</au><au>Lei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on Traffic Information Fusion Algorithm Based on Support Vector Machines</atitle><btitle>Sixth International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>183</spage><epage>187</epage><pages>183-187</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><isbn>0769525288</isbn><isbn>9780769525280</isbn><abstract>Support vector machine (SVM) is a new sort of machine learning method based on structure risk minimization (SRM) principle, which has high generalization capability. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by the method. In this paper, the traffic data on freeway were taken as research objects and an information fusion algorithm based on SVM about freeway incident detection was proposed. A SVM was trained and tested using the data obtained from the simulation under the condition of incident and non-incident. Compared with the multi-layer feed forward neural network (MLF) algorithm trained with the same data, the simulation results showed that the SVM offers a lower misclassification rate, higher correct detection rate and lower false alarm, and it can improve the detection performance</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2006.259</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-7143 |
ispartof | Sixth International Conference on Intelligent Systems Design and Applications, 2006, Vol.1, p.183-187 |
issn | 2164-7143 2164-7151 |
language | eng |
recordid | cdi_ieee_primary_4021432 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feeds Learning systems Machine learning algorithms Object detection Pattern recognition Risk management Support vector machines Telecommunication traffic Testing Traffic control |
title | Study on Traffic Information Fusion Algorithm Based on Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20Traffic%20Information%20Fusion%20Algorithm%20Based%20on%20Support%20Vector%20Machines&rft.btitle=Sixth%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Haihong%20Liu&rft.date=2006-10&rft.volume=1&rft.spage=183&rft.epage=187&rft.pages=183-187&rft.issn=2164-7143&rft.eissn=2164-7151&rft.isbn=0769525288&rft.isbn_list=9780769525280&rft_id=info:doi/10.1109/ISDA.2006.259&rft_dat=%3Cieee_6IE%3E4021432%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4021432&rfr_iscdi=true |