Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network

In this paper, a new approach to solve the inverse kinematics of a flexible macro-micro manipulator system is proposed. The macro-micro manipulator system consists of a macro flexible manipulator, and a micro rigid manipulator which is used to compensate for the errors at the tip of the system. Appa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu Zhang, Zengqi Sun, Tangwen Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Yu Zhang
Zengqi Sun
Tangwen Yang
description In this paper, a new approach to solve the inverse kinematics of a flexible macro-micro manipulator system is proposed. The macro-micro manipulator system consists of a macro flexible manipulator, and a micro rigid manipulator which is used to compensate for the errors at the tip of the system. Apparently, such a macro-micro system is a redundant system, of which the inverse kinematics remains challenging, with no generic solution to date. Here, optimal joint motions, namely the manipulator system configuration, are generated using a genetic algorithm and a neural network. A fitness function is dedicated to the genetic algorithm to optimize the discrete solution of the inverse kinematics of the manipulator system. Then the discrete solution is further generalized by a forward neural network. A new compensability measure is defined in this paper. The proposed approach shows excellent performance on error compensation, as demonstrated by the simulation results
doi_str_mv 10.1109/RAMECH.2006.252667
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4018783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4018783</ieee_id><sourcerecordid>4018783</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-153676d5415d5c7bbccc4c62b2056d02a177d173bac1938ff7551b9205871a603</originalsourceid><addsrcrecordid>eNpFj9lOwzAQRY0AiVL6A_DiH0iYcbwkj1XVBamLBOW5chynGLIUxxX074kKEi8z52p05-oSco8QI0L2-DxeTSeLmAHImAkmpbogt8gZ5wC9vvwXnF-RAUORRgxTvCGjrnsHgATTDAAH5HNzCK7WFV21wbUNndvGen3GtqSazir77fLK0pU2vo1q18-eG3c4Vjq0nr6cumBr-tq5Zn92B2fouNq33oW3muqmoGt79H3C2oav1n_cketSV50d_e0h2c6m28kiWm7mT5PxMnIZhAhFIpUsBEdRCKPy3BjDjWQ5AyELYBqVKlAluTaYJWlZKiEwz_prqlBLSIbk4fets9buDr4v6U87DpiqNEl-AFwlXIU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yu Zhang ; Zengqi Sun ; Tangwen Yang</creator><creatorcontrib>Yu Zhang ; Zengqi Sun ; Tangwen Yang</creatorcontrib><description>In this paper, a new approach to solve the inverse kinematics of a flexible macro-micro manipulator system is proposed. The macro-micro manipulator system consists of a macro flexible manipulator, and a micro rigid manipulator which is used to compensate for the errors at the tip of the system. Apparently, such a macro-micro system is a redundant system, of which the inverse kinematics remains challenging, with no generic solution to date. Here, optimal joint motions, namely the manipulator system configuration, are generated using a genetic algorithm and a neural network. A fitness function is dedicated to the genetic algorithm to optimize the discrete solution of the inverse kinematics of the manipulator system. Then the discrete solution is further generalized by a forward neural network. A new compensability measure is defined in this paper. The proposed approach shows excellent performance on error compensation, as demonstrated by the simulation results</description><identifier>ISSN: 2158-2181</identifier><identifier>ISBN: 1424400244</identifier><identifier>ISBN: 9781424400249</identifier><identifier>EISBN: 1424400252</identifier><identifier>EISBN: 9781424400256</identifier><identifier>DOI: 10.1109/RAMECH.2006.252667</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Constraint optimization ; Error compensation ; genetic algorithm ; Genetic algorithms ; Intelligent networks ; Intelligent systems ; Kinematics ; Laboratories ; macro-micro manipulator ; motion planning ; neural network ; Neural networks ; Sun</subject><ispartof>2006 IEEE Conference on Robotics, Automation and Mechatronics, 2006, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4018783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4018783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Zhang</creatorcontrib><creatorcontrib>Zengqi Sun</creatorcontrib><creatorcontrib>Tangwen Yang</creatorcontrib><title>Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network</title><title>2006 IEEE Conference on Robotics, Automation and Mechatronics</title><addtitle>RAMECH</addtitle><description>In this paper, a new approach to solve the inverse kinematics of a flexible macro-micro manipulator system is proposed. The macro-micro manipulator system consists of a macro flexible manipulator, and a micro rigid manipulator which is used to compensate for the errors at the tip of the system. Apparently, such a macro-micro system is a redundant system, of which the inverse kinematics remains challenging, with no generic solution to date. Here, optimal joint motions, namely the manipulator system configuration, are generated using a genetic algorithm and a neural network. A fitness function is dedicated to the genetic algorithm to optimize the discrete solution of the inverse kinematics of the manipulator system. Then the discrete solution is further generalized by a forward neural network. A new compensability measure is defined in this paper. The proposed approach shows excellent performance on error compensation, as demonstrated by the simulation results</description><subject>Computer science</subject><subject>Constraint optimization</subject><subject>Error compensation</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Intelligent networks</subject><subject>Intelligent systems</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>macro-micro manipulator</subject><subject>motion planning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Sun</subject><issn>2158-2181</issn><isbn>1424400244</isbn><isbn>9781424400249</isbn><isbn>1424400252</isbn><isbn>9781424400256</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9lOwzAQRY0AiVL6A_DiH0iYcbwkj1XVBamLBOW5chynGLIUxxX074kKEi8z52p05-oSco8QI0L2-DxeTSeLmAHImAkmpbogt8gZ5wC9vvwXnF-RAUORRgxTvCGjrnsHgATTDAAH5HNzCK7WFV21wbUNndvGen3GtqSazir77fLK0pU2vo1q18-eG3c4Vjq0nr6cumBr-tq5Zn92B2fouNq33oW3muqmoGt79H3C2oav1n_cketSV50d_e0h2c6m28kiWm7mT5PxMnIZhAhFIpUsBEdRCKPy3BjDjWQ5AyELYBqVKlAluTaYJWlZKiEwz_prqlBLSIbk4fets9buDr4v6U87DpiqNEl-AFwlXIU</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Yu Zhang</creator><creator>Zengqi Sun</creator><creator>Tangwen Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network</title><author>Yu Zhang ; Zengqi Sun ; Tangwen Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-153676d5415d5c7bbccc4c62b2056d02a177d173bac1938ff7551b9205871a603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Constraint optimization</topic><topic>Error compensation</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Intelligent networks</topic><topic>Intelligent systems</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>macro-micro manipulator</topic><topic>motion planning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu Zhang</creatorcontrib><creatorcontrib>Zengqi Sun</creatorcontrib><creatorcontrib>Tangwen Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Zhang</au><au>Zengqi Sun</au><au>Tangwen Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network</atitle><btitle>2006 IEEE Conference on Robotics, Automation and Mechatronics</btitle><stitle>RAMECH</stitle><date>2006-12</date><risdate>2006</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2158-2181</issn><isbn>1424400244</isbn><isbn>9781424400249</isbn><eisbn>1424400252</eisbn><eisbn>9781424400256</eisbn><abstract>In this paper, a new approach to solve the inverse kinematics of a flexible macro-micro manipulator system is proposed. The macro-micro manipulator system consists of a macro flexible manipulator, and a micro rigid manipulator which is used to compensate for the errors at the tip of the system. Apparently, such a macro-micro system is a redundant system, of which the inverse kinematics remains challenging, with no generic solution to date. Here, optimal joint motions, namely the manipulator system configuration, are generated using a genetic algorithm and a neural network. A fitness function is dedicated to the genetic algorithm to optimize the discrete solution of the inverse kinematics of the manipulator system. Then the discrete solution is further generalized by a forward neural network. A new compensability measure is defined in this paper. The proposed approach shows excellent performance on error compensation, as demonstrated by the simulation results</abstract><pub>IEEE</pub><doi>10.1109/RAMECH.2006.252667</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-2181
ispartof 2006 IEEE Conference on Robotics, Automation and Mechatronics, 2006, p.1-6
issn 2158-2181
language eng
recordid cdi_ieee_primary_4018783
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Constraint optimization
Error compensation
genetic algorithm
Genetic algorithms
Intelligent networks
Intelligent systems
Kinematics
Laboratories
macro-micro manipulator
motion planning
neural network
Neural networks
Sun
title Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Motion%20Generation%20of%20a%20Flexible%20Macro-micro%20Manipulator%20System%20Using%20Genetic%20Algorithm%20and%20Neural%20Network&rft.btitle=2006%20IEEE%20Conference%20on%20Robotics,%20Automation%20and%20Mechatronics&rft.au=Yu%20Zhang&rft.date=2006-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2158-2181&rft.isbn=1424400244&rft.isbn_list=9781424400249&rft_id=info:doi/10.1109/RAMECH.2006.252667&rft_dat=%3Cieee_6IE%3E4018783%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424400252&rft.eisbn_list=9781424400256&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4018783&rfr_iscdi=true