Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems

The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramkumar, A.S., Ponnambalam, S.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Ramkumar, A.S.
Ponnambalam, S.G.
description The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP
doi_str_mv 10.1109/ICCIS.2006.252286
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4017845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4017845</ieee_id><sourcerecordid>4017845</sourcerecordid><originalsourceid>FETCH-LOGICAL-i160t-d166d6235b2299021585643101934885a008a62757463b6938debfcfcacc8b713</originalsourceid><addsrcrecordid>eNotjF1LwzAYRgMqOOZ-gHiTP9D55s1Hk8tRnBtMVKbXM03TGWkbSTqh_96BPjcHDoeHkFsGS8bA3G-rartfIoBaokTU6oIsTKmZQCEAEOUlmSFHVWiG_Joscv6C87gRjMOMfGymOoWGroaRutjFYaL7KY--p21MNMfuJwxH-nqyTbJjcHSVczgOvT_n65j6U3e2caCxpU_WfYbB052d4mmkLynWne_zDblqbZf94p9z8r5-eKs2xe75cVutdkVgCsaiYUo1CrmsEY0BZFJLJTgDZrjQWloAbRWWshSK18pw3fi6da2zzum6ZHxO7v5-g_f-8J1Cb9N0EMBKLST_BcluVMk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ramkumar, A.S. ; Ponnambalam, S.G.</creator><creatorcontrib>Ramkumar, A.S. ; Ponnambalam, S.G.</creatorcontrib><description>The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP</description><identifier>ISSN: 2326-8123</identifier><identifier>ISBN: 9781424400225</identifier><identifier>ISBN: 1424400228</identifier><identifier>ISBN: 1424400236</identifier><identifier>ISBN: 9781424400232</identifier><identifier>DOI: 10.1109/ICCIS.2006.252286</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Benchmark testing ; Cost function ; Design optimization ; Educational institutions ; Genetic algorithms ; guided local search ; Heuristic algorithms ; Libraries ; machine layout ; Production engineering ; Quadratic Assignment Problem</subject><ispartof>2006 IEEE Conference on Cybernetics and Intelligent Systems, 2006, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4017845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4017845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramkumar, A.S.</creatorcontrib><creatorcontrib>Ponnambalam, S.G.</creatorcontrib><title>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</title><title>2006 IEEE Conference on Cybernetics and Intelligent Systems</title><addtitle>ICCIS</addtitle><description>The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Cost function</subject><subject>Design optimization</subject><subject>Educational institutions</subject><subject>Genetic algorithms</subject><subject>guided local search</subject><subject>Heuristic algorithms</subject><subject>Libraries</subject><subject>machine layout</subject><subject>Production engineering</subject><subject>Quadratic Assignment Problem</subject><issn>2326-8123</issn><isbn>9781424400225</isbn><isbn>1424400228</isbn><isbn>1424400236</isbn><isbn>9781424400232</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYRgMqOOZ-gHiTP9D55s1Hk8tRnBtMVKbXM03TGWkbSTqh_96BPjcHDoeHkFsGS8bA3G-rartfIoBaokTU6oIsTKmZQCEAEOUlmSFHVWiG_Joscv6C87gRjMOMfGymOoWGroaRutjFYaL7KY--p21MNMfuJwxH-nqyTbJjcHSVczgOvT_n65j6U3e2caCxpU_WfYbB052d4mmkLynWne_zDblqbZf94p9z8r5-eKs2xe75cVutdkVgCsaiYUo1CrmsEY0BZFJLJTgDZrjQWloAbRWWshSK18pw3fi6da2zzum6ZHxO7v5-g_f-8J1Cb9N0EMBKLST_BcluVMk</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Ramkumar, A.S.</creator><creator>Ponnambalam, S.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200606</creationdate><title>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</title><author>Ramkumar, A.S. ; Ponnambalam, S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i160t-d166d6235b2299021585643101934885a008a62757463b6938debfcfcacc8b713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Cost function</topic><topic>Design optimization</topic><topic>Educational institutions</topic><topic>Genetic algorithms</topic><topic>guided local search</topic><topic>Heuristic algorithms</topic><topic>Libraries</topic><topic>machine layout</topic><topic>Production engineering</topic><topic>Quadratic Assignment Problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramkumar, A.S.</creatorcontrib><creatorcontrib>Ponnambalam, S.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramkumar, A.S.</au><au>Ponnambalam, S.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</atitle><btitle>2006 IEEE Conference on Cybernetics and Intelligent Systems</btitle><stitle>ICCIS</stitle><date>2006-06</date><risdate>2006</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2326-8123</issn><isbn>9781424400225</isbn><isbn>1424400228</isbn><isbn>1424400236</isbn><isbn>9781424400232</isbn><abstract>The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2006.252286</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2326-8123
ispartof 2006 IEEE Conference on Cybernetics and Intelligent Systems, 2006, p.1-5
issn 2326-8123
language eng
recordid cdi_ieee_primary_4017845
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Ant colony optimization
Benchmark testing
Cost function
Design optimization
Educational institutions
Genetic algorithms
guided local search
Heuristic algorithms
Libraries
machine layout
Production engineering
Quadratic Assignment Problem
title Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Ant%20colony%20System%20for%20solving%20Quadratic%20Assignment%20Formulation%20of%20Machine%20Layout%20Problems&rft.btitle=2006%20IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems&rft.au=Ramkumar,%20A.S.&rft.date=2006-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2326-8123&rft.isbn=9781424400225&rft.isbn_list=1424400228&rft.isbn_list=1424400236&rft.isbn_list=9781424400232&rft_id=info:doi/10.1109/ICCIS.2006.252286&rft_dat=%3Cieee_6IE%3E4017845%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4017845&rfr_iscdi=true