Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems
The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ramkumar, A.S. Ponnambalam, S.G. |
description | The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP |
doi_str_mv | 10.1109/ICCIS.2006.252286 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4017845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4017845</ieee_id><sourcerecordid>4017845</sourcerecordid><originalsourceid>FETCH-LOGICAL-i160t-d166d6235b2299021585643101934885a008a62757463b6938debfcfcacc8b713</originalsourceid><addsrcrecordid>eNotjF1LwzAYRgMqOOZ-gHiTP9D55s1Hk8tRnBtMVKbXM03TGWkbSTqh_96BPjcHDoeHkFsGS8bA3G-rartfIoBaokTU6oIsTKmZQCEAEOUlmSFHVWiG_Joscv6C87gRjMOMfGymOoWGroaRutjFYaL7KY--p21MNMfuJwxH-nqyTbJjcHSVczgOvT_n65j6U3e2caCxpU_WfYbB052d4mmkLynWne_zDblqbZf94p9z8r5-eKs2xe75cVutdkVgCsaiYUo1CrmsEY0BZFJLJTgDZrjQWloAbRWWshSK18pw3fi6da2zzum6ZHxO7v5-g_f-8J1Cb9N0EMBKLST_BcluVMk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ramkumar, A.S. ; Ponnambalam, S.G.</creator><creatorcontrib>Ramkumar, A.S. ; Ponnambalam, S.G.</creatorcontrib><description>The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP</description><identifier>ISSN: 2326-8123</identifier><identifier>ISBN: 9781424400225</identifier><identifier>ISBN: 1424400228</identifier><identifier>ISBN: 1424400236</identifier><identifier>ISBN: 9781424400232</identifier><identifier>DOI: 10.1109/ICCIS.2006.252286</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Benchmark testing ; Cost function ; Design optimization ; Educational institutions ; Genetic algorithms ; guided local search ; Heuristic algorithms ; Libraries ; machine layout ; Production engineering ; Quadratic Assignment Problem</subject><ispartof>2006 IEEE Conference on Cybernetics and Intelligent Systems, 2006, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4017845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4017845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramkumar, A.S.</creatorcontrib><creatorcontrib>Ponnambalam, S.G.</creatorcontrib><title>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</title><title>2006 IEEE Conference on Cybernetics and Intelligent Systems</title><addtitle>ICCIS</addtitle><description>The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Cost function</subject><subject>Design optimization</subject><subject>Educational institutions</subject><subject>Genetic algorithms</subject><subject>guided local search</subject><subject>Heuristic algorithms</subject><subject>Libraries</subject><subject>machine layout</subject><subject>Production engineering</subject><subject>Quadratic Assignment Problem</subject><issn>2326-8123</issn><isbn>9781424400225</isbn><isbn>1424400228</isbn><isbn>1424400236</isbn><isbn>9781424400232</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYRgMqOOZ-gHiTP9D55s1Hk8tRnBtMVKbXM03TGWkbSTqh_96BPjcHDoeHkFsGS8bA3G-rartfIoBaokTU6oIsTKmZQCEAEOUlmSFHVWiG_Joscv6C87gRjMOMfGymOoWGroaRutjFYaL7KY--p21MNMfuJwxH-nqyTbJjcHSVczgOvT_n65j6U3e2caCxpU_WfYbB052d4mmkLynWne_zDblqbZf94p9z8r5-eKs2xe75cVutdkVgCsaiYUo1CrmsEY0BZFJLJTgDZrjQWloAbRWWshSK18pw3fi6da2zzum6ZHxO7v5-g_f-8J1Cb9N0EMBKLST_BcluVMk</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Ramkumar, A.S.</creator><creator>Ponnambalam, S.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200606</creationdate><title>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</title><author>Ramkumar, A.S. ; Ponnambalam, S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i160t-d166d6235b2299021585643101934885a008a62757463b6938debfcfcacc8b713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Cost function</topic><topic>Design optimization</topic><topic>Educational institutions</topic><topic>Genetic algorithms</topic><topic>guided local search</topic><topic>Heuristic algorithms</topic><topic>Libraries</topic><topic>machine layout</topic><topic>Production engineering</topic><topic>Quadratic Assignment Problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramkumar, A.S.</creatorcontrib><creatorcontrib>Ponnambalam, S.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramkumar, A.S.</au><au>Ponnambalam, S.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems</atitle><btitle>2006 IEEE Conference on Cybernetics and Intelligent Systems</btitle><stitle>ICCIS</stitle><date>2006-06</date><risdate>2006</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2326-8123</issn><isbn>9781424400225</isbn><isbn>1424400228</isbn><isbn>1424400236</isbn><isbn>9781424400232</isbn><abstract>The quadratic assignment problems (QAPs) are the problem of assigning 'n' facilities to 'n' locations so that the assignment cost is minimized, where the cost is defined by a quadratic function. In this paper we investigate and present the application of population based hybrid ant-colony system (PHAS) metaheuristic for solving machine (facility) layout problems formulated as quadratic assignment problem, a well-known NP hard combinatorial optimization problem. Ant-colony system is a model for designing metaheuristic algorithms for combinatorial optimization problems. The PHAS ant system algorithm incorporates population-based ants in its initial phase instead of small number of ants and probability based pheromone trail modification. We tested our algorithm on the benchmark instances of QAPLIB, a well-known library of QAP instances and the obtained solution quality is compared with solution obtained with standard guided local search algorithm for the same QAP</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2006.252286</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2326-8123 |
ispartof | 2006 IEEE Conference on Cybernetics and Intelligent Systems, 2006, p.1-5 |
issn | 2326-8123 |
language | eng |
recordid | cdi_ieee_primary_4017845 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Ant colony optimization Benchmark testing Cost function Design optimization Educational institutions Genetic algorithms guided local search Heuristic algorithms Libraries machine layout Production engineering Quadratic Assignment Problem |
title | Hybrid Ant colony System for solving Quadratic Assignment Formulation of Machine Layout Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Ant%20colony%20System%20for%20solving%20Quadratic%20Assignment%20Formulation%20of%20Machine%20Layout%20Problems&rft.btitle=2006%20IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems&rft.au=Ramkumar,%20A.S.&rft.date=2006-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2326-8123&rft.isbn=9781424400225&rft.isbn_list=1424400228&rft.isbn_list=1424400236&rft.isbn_list=9781424400232&rft_id=info:doi/10.1109/ICCIS.2006.252286&rft_dat=%3Cieee_6IE%3E4017845%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4017845&rfr_iscdi=true |