Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance

In this letter, the effects of the millisecond anneal in conjunction with conventional spike anneal on the p-n junction formation in CMOS devices are studied. The results reveal that the millisecond and spike annealing sequence plays an important role in the implanted boron p+/n junction formation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2006-12, Vol.27 (12), p.969-971
Hauptverfasser: Nieh, C.F., Ku, K.C., Chen, C.H., Chang, H., Wang, L.T., Huang, L.P., Sheu, Y.M., Wang, C.C., Lee, T.L., Chen, S.C., Liang, M.S., Gong, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 12
container_start_page 969
container_title IEEE electron device letters
container_volume 27
creator Nieh, C.F.
Ku, K.C.
Chen, C.H.
Chang, H.
Wang, L.T.
Huang, L.P.
Sheu, Y.M.
Wang, C.C.
Lee, T.L.
Chen, S.C.
Liang, M.S.
Gong, J.
description In this letter, the effects of the millisecond anneal in conjunction with conventional spike anneal on the p-n junction formation in CMOS devices are studied. The results reveal that the millisecond and spike annealing sequence plays an important role in the implanted boron p+/n junction formation. On blanket Si wafers, the millisecond anneal followed by the spike anneal increases implanted boron solid solubility in crystalline silicon by ~18% compared to that obtained using reversed annealing sequence under the same annealing conditions. This result substantially alters the short-channel effect behaviors in the fabricated CMOS devices, resulting in opposite threshold-voltage behaviors in PMOS and NMOS devices when using boron as NMOS halo implant. The results also provide useful insights into ultrashallow-junction formation and short-channel effect control when scaling CMOS technology
doi_str_mv 10.1109/LED.2006.886317
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4016198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4016198</ieee_id><sourcerecordid>2543704271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-7fb3bb5a18039315672ae50510c43afb3504ea34e0ac9521f8fb29400a85ed783</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVoIY7bcw-5iECgl3VmVh-rPYat-wEOKTg5C1mRiIIsJdL60H9fBYcGehg0aJ55GR5CviCsEGG82qy_rXoAuVJKMhxOyAKFUB0IyT6QBQwcO4YgT8lZrU8AyPnAF-T-JsQYqrM5PdDrlJyJ1LR2-5jL3E2Ppn1Fuvbe2ZlOOc0lRxoS3QY63dxu6V0xqYY650J_u-Jz2Ztk3Sfy0ZtY3ee3d0nuv6_vpp_d5vbHr-l601nG-rkb_I7tdsKgAjYyFHLojRMgECxnpg0FcGcYd2DsKHr0yu_6kQMYJdzDoNiSfD3mPpf8cnB11vtQrYvRJJcPVaMcsB8Ea_lLcvEf-pQPJbXr9Ig9tJLYoKsjZEuutTivn0vYm_JHI-hXy7pZ1q-W9dFy27h8izXVmuibDhvq-5piHEYpGnd-5IJz7t-YA0ocFfsLEOeC9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912091261</pqid></control><display><type>article</type><title>Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Nieh, C.F. ; Ku, K.C. ; Chen, C.H. ; Chang, H. ; Wang, L.T. ; Huang, L.P. ; Sheu, Y.M. ; Wang, C.C. ; Lee, T.L. ; Chen, S.C. ; Liang, M.S. ; Gong, J.</creator><creatorcontrib>Nieh, C.F. ; Ku, K.C. ; Chen, C.H. ; Chang, H. ; Wang, L.T. ; Huang, L.P. ; Sheu, Y.M. ; Wang, C.C. ; Lee, T.L. ; Chen, S.C. ; Liang, M.S. ; Gong, J.</creatorcontrib><description>In this letter, the effects of the millisecond anneal in conjunction with conventional spike anneal on the p-n junction formation in CMOS devices are studied. The results reveal that the millisecond and spike annealing sequence plays an important role in the implanted boron p+/n junction formation. On blanket Si wafers, the millisecond anneal followed by the spike anneal increases implanted boron solid solubility in crystalline silicon by ~18% compared to that obtained using reversed annealing sequence under the same annealing conditions. This result substantially alters the short-channel effect behaviors in the fabricated CMOS devices, resulting in opposite threshold-voltage behaviors in PMOS and NMOS devices when using boron as NMOS halo implant. The results also provide useful insights into ultrashallow-junction formation and short-channel effect control when scaling CMOS technology</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2006.886317</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Applied sciences ; Boron ; CMOS ; CMOS technology ; Compound structure devices ; Crystal structure ; Design. Technologies. Operation analysis. Testing ; Devices ; Electronics ; Exact sciences and technology ; Fabrication ; Implants ; Integrated circuits ; MOS devices ; P-n junctions ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; short-channel effect (SCE) ; Silicon ; Solids ; Spikes ; Temperature ; Transistors ; ultrashallow junction (USJ)</subject><ispartof>IEEE electron device letters, 2006-12, Vol.27 (12), p.969-971</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-7fb3bb5a18039315672ae50510c43afb3504ea34e0ac9521f8fb29400a85ed783</citedby><cites>FETCH-LOGICAL-c332t-7fb3bb5a18039315672ae50510c43afb3504ea34e0ac9521f8fb29400a85ed783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4016198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4016198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18340965$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nieh, C.F.</creatorcontrib><creatorcontrib>Ku, K.C.</creatorcontrib><creatorcontrib>Chen, C.H.</creatorcontrib><creatorcontrib>Chang, H.</creatorcontrib><creatorcontrib>Wang, L.T.</creatorcontrib><creatorcontrib>Huang, L.P.</creatorcontrib><creatorcontrib>Sheu, Y.M.</creatorcontrib><creatorcontrib>Wang, C.C.</creatorcontrib><creatorcontrib>Lee, T.L.</creatorcontrib><creatorcontrib>Chen, S.C.</creatorcontrib><creatorcontrib>Liang, M.S.</creatorcontrib><creatorcontrib>Gong, J.</creatorcontrib><title>Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, the effects of the millisecond anneal in conjunction with conventional spike anneal on the p-n junction formation in CMOS devices are studied. The results reveal that the millisecond and spike annealing sequence plays an important role in the implanted boron p+/n junction formation. On blanket Si wafers, the millisecond anneal followed by the spike anneal increases implanted boron solid solubility in crystalline silicon by ~18% compared to that obtained using reversed annealing sequence under the same annealing conditions. This result substantially alters the short-channel effect behaviors in the fabricated CMOS devices, resulting in opposite threshold-voltage behaviors in PMOS and NMOS devices when using boron as NMOS halo implant. The results also provide useful insights into ultrashallow-junction formation and short-channel effect control when scaling CMOS technology</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Boron</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Compound structure devices</subject><subject>Crystal structure</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Implants</subject><subject>Integrated circuits</subject><subject>MOS devices</subject><subject>P-n junctions</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>short-channel effect (SCE)</subject><subject>Silicon</subject><subject>Solids</subject><subject>Spikes</subject><subject>Temperature</subject><subject>Transistors</subject><subject>ultrashallow junction (USJ)</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rGzEQhkVoIY7bcw-5iECgl3VmVh-rPYat-wEOKTg5C1mRiIIsJdL60H9fBYcGehg0aJ55GR5CviCsEGG82qy_rXoAuVJKMhxOyAKFUB0IyT6QBQwcO4YgT8lZrU8AyPnAF-T-JsQYqrM5PdDrlJyJ1LR2-5jL3E2Ppn1Fuvbe2ZlOOc0lRxoS3QY63dxu6V0xqYY650J_u-Jz2Ztk3Sfy0ZtY3ee3d0nuv6_vpp_d5vbHr-l601nG-rkb_I7tdsKgAjYyFHLojRMgECxnpg0FcGcYd2DsKHr0yu_6kQMYJdzDoNiSfD3mPpf8cnB11vtQrYvRJJcPVaMcsB8Ea_lLcvEf-pQPJbXr9Ig9tJLYoKsjZEuutTivn0vYm_JHI-hXy7pZ1q-W9dFy27h8izXVmuibDhvq-5piHEYpGnd-5IJz7t-YA0ocFfsLEOeC9g</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Nieh, C.F.</creator><creator>Ku, K.C.</creator><creator>Chen, C.H.</creator><creator>Chang, H.</creator><creator>Wang, L.T.</creator><creator>Huang, L.P.</creator><creator>Sheu, Y.M.</creator><creator>Wang, C.C.</creator><creator>Lee, T.L.</creator><creator>Chen, S.C.</creator><creator>Liang, M.S.</creator><creator>Gong, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200612</creationdate><title>Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance</title><author>Nieh, C.F. ; Ku, K.C. ; Chen, C.H. ; Chang, H. ; Wang, L.T. ; Huang, L.P. ; Sheu, Y.M. ; Wang, C.C. ; Lee, T.L. ; Chen, S.C. ; Liang, M.S. ; Gong, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-7fb3bb5a18039315672ae50510c43afb3504ea34e0ac9521f8fb29400a85ed783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Boron</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Compound structure devices</topic><topic>Crystal structure</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Implants</topic><topic>Integrated circuits</topic><topic>MOS devices</topic><topic>P-n junctions</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>short-channel effect (SCE)</topic><topic>Silicon</topic><topic>Solids</topic><topic>Spikes</topic><topic>Temperature</topic><topic>Transistors</topic><topic>ultrashallow junction (USJ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieh, C.F.</creatorcontrib><creatorcontrib>Ku, K.C.</creatorcontrib><creatorcontrib>Chen, C.H.</creatorcontrib><creatorcontrib>Chang, H.</creatorcontrib><creatorcontrib>Wang, L.T.</creatorcontrib><creatorcontrib>Huang, L.P.</creatorcontrib><creatorcontrib>Sheu, Y.M.</creatorcontrib><creatorcontrib>Wang, C.C.</creatorcontrib><creatorcontrib>Lee, T.L.</creatorcontrib><creatorcontrib>Chen, S.C.</creatorcontrib><creatorcontrib>Liang, M.S.</creatorcontrib><creatorcontrib>Gong, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nieh, C.F.</au><au>Ku, K.C.</au><au>Chen, C.H.</au><au>Chang, H.</au><au>Wang, L.T.</au><au>Huang, L.P.</au><au>Sheu, Y.M.</au><au>Wang, C.C.</au><au>Lee, T.L.</au><au>Chen, S.C.</au><au>Liang, M.S.</au><au>Gong, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2006-12</date><risdate>2006</risdate><volume>27</volume><issue>12</issue><spage>969</spage><epage>971</epage><pages>969-971</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, the effects of the millisecond anneal in conjunction with conventional spike anneal on the p-n junction formation in CMOS devices are studied. The results reveal that the millisecond and spike annealing sequence plays an important role in the implanted boron p+/n junction formation. On blanket Si wafers, the millisecond anneal followed by the spike anneal increases implanted boron solid solubility in crystalline silicon by ~18% compared to that obtained using reversed annealing sequence under the same annealing conditions. This result substantially alters the short-channel effect behaviors in the fabricated CMOS devices, resulting in opposite threshold-voltage behaviors in PMOS and NMOS devices when using boron as NMOS halo implant. The results also provide useful insights into ultrashallow-junction formation and short-channel effect control when scaling CMOS technology</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2006.886317</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2006-12, Vol.27 (12), p.969-971
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_4016198
source IEEE/IET Electronic Library (IEL)
subjects Annealing
Applied sciences
Boron
CMOS
CMOS technology
Compound structure devices
Crystal structure
Design. Technologies. Operation analysis. Testing
Devices
Electronics
Exact sciences and technology
Fabrication
Implants
Integrated circuits
MOS devices
P-n junctions
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
short-channel effect (SCE)
Silicon
Solids
Spikes
Temperature
Transistors
ultrashallow junction (USJ)
title Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millisecond%20Anneal%20and%20Short-Channel%20Effect%20Control%20in%20Si%20CMOS%20Transistor%20Performance&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Nieh,%20C.F.&rft.date=2006-12&rft.volume=27&rft.issue=12&rft.spage=969&rft.epage=971&rft.pages=969-971&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2006.886317&rft_dat=%3Cproquest_RIE%3E2543704271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912091261&rft_id=info:pmid/&rft_ieee_id=4016198&rfr_iscdi=true