Data Association for Multiple Sensor Types Using Fuzzy Logic
The concept of target tracking, a part of level 1 data fusion, is to combine measures from various sensors to form a coherent picture of the scene. A key component of the fusion problem is data association, the assignment of various measurements to existing target tracks. For the typical case in tar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2006-12, Vol.55 (6), p.2292-2303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2303 |
---|---|
container_issue | 6 |
container_start_page | 2292 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 55 |
creator | Stubberud, S.C. Kramer, K.A. |
description | The concept of target tracking, a part of level 1 data fusion, is to combine measures from various sensors to form a coherent picture of the scene. A key component of the fusion problem is data association, the assignment of various measurements to existing target tracks. For the typical case in target association where both the target tracks and the measurements are described with Gaussian random variables, the standard association uses the chi 2 metric, a weighted inner product of the residual formed by an estimated measurement and the true measurement. There are cases where the measurements are not well described as Gaussian random variables, including those from sensors that have uncertainties that are better approximated as uniform distributions or where the Gaussian distribution is corrupted by sensor blockage or target constraints. Based upon the proven concept of the chi 2 metric, a straightforward fuzzy-logic-based association method is developed that can emulate this metric for Gaussian measurements but can be modified to address problems where the Gaussian assumption on the track and/or measurement is not appropriate |
doi_str_mv | 10.1109/TIM.2006.887037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4014738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4014738</ieee_id><sourcerecordid>2340323881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-c372be25d1c66ffa171385ce5e876226b11782de5765a93d9bd87800d0c0db63</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwM7BELExpz3b8EYmlKhQqtWIgzJbjOFWqNA5xMrS_HldBDCx3Oul5X50ehO4xzDCGdJ6ttzMCwGdSCqDiAk0wYyJOOSeXaAKAZZwmjF-jG-_3ACB4Iibo-UX3Olp470yl-8o1Uem6aDvUfdXWNvq0jQ93dmytj7581eyi1XA6HaON21XmFl2Vuvb27ndPUbZ6zZbv8ebjbb1cbGJDCfRhCpJbwgpsOC9LjQWmkhnLrBScEJ5jLCQpLBOc6ZQWaV5IIQEKMFDknE7R01jbdu57sL5Xh8obW9e6sW7wSsqUSkJD6xQ9_iP3buia8JuSnAUfNE0DNB8h0znvO1uqtqsOujsqDOqsUgWV6qxSjSpD4mFMVNbaPzoBnAgq6Q986W2i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865155399</pqid></control><display><type>article</type><title>Data Association for Multiple Sensor Types Using Fuzzy Logic</title><source>IEEE Explore</source><creator>Stubberud, S.C. ; Kramer, K.A.</creator><creatorcontrib>Stubberud, S.C. ; Kramer, K.A.</creatorcontrib><description>The concept of target tracking, a part of level 1 data fusion, is to combine measures from various sensors to form a coherent picture of the scene. A key component of the fusion problem is data association, the assignment of various measurements to existing target tracks. For the typical case in target association where both the target tracks and the measurements are described with Gaussian random variables, the standard association uses the chi 2 metric, a weighted inner product of the residual formed by an estimated measurement and the true measurement. There are cases where the measurements are not well described as Gaussian random variables, including those from sensors that have uncertainties that are better approximated as uniform distributions or where the Gaussian distribution is corrupted by sensor blockage or target constraints. Based upon the proven concept of the chi 2 metric, a straightforward fuzzy-logic-based association method is developed that can emulate this metric for Gaussian measurements but can be modified to address problems where the Gaussian assumption on the track and/or measurement is not appropriate</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2006.887037</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Blockage ; Correlation ; data association ; Density functional theory ; Fuzzy logic ; Gaussian ; Gaussian distribution ; Instrumentation ; Intelligent sensors ; intelligent systems ; Measurement uncertainty ; multisensor systems ; Normal distribution ; Random variables ; Sensor fusion ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; Studies ; Target tracking ; tracking</subject><ispartof>IEEE transactions on instrumentation and measurement, 2006-12, Vol.55 (6), p.2292-2303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-c372be25d1c66ffa171385ce5e876226b11782de5765a93d9bd87800d0c0db63</citedby><cites>FETCH-LOGICAL-c320t-c372be25d1c66ffa171385ce5e876226b11782de5765a93d9bd87800d0c0db63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4014738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4014738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stubberud, S.C.</creatorcontrib><creatorcontrib>Kramer, K.A.</creatorcontrib><title>Data Association for Multiple Sensor Types Using Fuzzy Logic</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The concept of target tracking, a part of level 1 data fusion, is to combine measures from various sensors to form a coherent picture of the scene. A key component of the fusion problem is data association, the assignment of various measurements to existing target tracks. For the typical case in target association where both the target tracks and the measurements are described with Gaussian random variables, the standard association uses the chi 2 metric, a weighted inner product of the residual formed by an estimated measurement and the true measurement. There are cases where the measurements are not well described as Gaussian random variables, including those from sensors that have uncertainties that are better approximated as uniform distributions or where the Gaussian distribution is corrupted by sensor blockage or target constraints. Based upon the proven concept of the chi 2 metric, a straightforward fuzzy-logic-based association method is developed that can emulate this metric for Gaussian measurements but can be modified to address problems where the Gaussian assumption on the track and/or measurement is not appropriate</description><subject>Approximation</subject><subject>Blockage</subject><subject>Correlation</subject><subject>data association</subject><subject>Density functional theory</subject><subject>Fuzzy logic</subject><subject>Gaussian</subject><subject>Gaussian distribution</subject><subject>Instrumentation</subject><subject>Intelligent sensors</subject><subject>intelligent systems</subject><subject>Measurement uncertainty</subject><subject>multisensor systems</subject><subject>Normal distribution</subject><subject>Random variables</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Studies</subject><subject>Target tracking</subject><subject>tracking</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwM7BELExpz3b8EYmlKhQqtWIgzJbjOFWqNA5xMrS_HldBDCx3Oul5X50ehO4xzDCGdJ6ttzMCwGdSCqDiAk0wYyJOOSeXaAKAZZwmjF-jG-_3ACB4Iibo-UX3Olp470yl-8o1Uem6aDvUfdXWNvq0jQ93dmytj7581eyi1XA6HaON21XmFl2Vuvb27ndPUbZ6zZbv8ebjbb1cbGJDCfRhCpJbwgpsOC9LjQWmkhnLrBScEJ5jLCQpLBOc6ZQWaV5IIQEKMFDknE7R01jbdu57sL5Xh8obW9e6sW7wSsqUSkJD6xQ9_iP3buia8JuSnAUfNE0DNB8h0znvO1uqtqsOujsqDOqsUgWV6qxSjSpD4mFMVNbaPzoBnAgq6Q986W2i</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Stubberud, S.C.</creator><creator>Kramer, K.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061201</creationdate><title>Data Association for Multiple Sensor Types Using Fuzzy Logic</title><author>Stubberud, S.C. ; Kramer, K.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-c372be25d1c66ffa171385ce5e876226b11782de5765a93d9bd87800d0c0db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>Blockage</topic><topic>Correlation</topic><topic>data association</topic><topic>Density functional theory</topic><topic>Fuzzy logic</topic><topic>Gaussian</topic><topic>Gaussian distribution</topic><topic>Instrumentation</topic><topic>Intelligent sensors</topic><topic>intelligent systems</topic><topic>Measurement uncertainty</topic><topic>multisensor systems</topic><topic>Normal distribution</topic><topic>Random variables</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Studies</topic><topic>Target tracking</topic><topic>tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stubberud, S.C.</creatorcontrib><creatorcontrib>Kramer, K.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stubberud, S.C.</au><au>Kramer, K.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Association for Multiple Sensor Types Using Fuzzy Logic</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>55</volume><issue>6</issue><spage>2292</spage><epage>2303</epage><pages>2292-2303</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The concept of target tracking, a part of level 1 data fusion, is to combine measures from various sensors to form a coherent picture of the scene. A key component of the fusion problem is data association, the assignment of various measurements to existing target tracks. For the typical case in target association where both the target tracks and the measurements are described with Gaussian random variables, the standard association uses the chi 2 metric, a weighted inner product of the residual formed by an estimated measurement and the true measurement. There are cases where the measurements are not well described as Gaussian random variables, including those from sensors that have uncertainties that are better approximated as uniform distributions or where the Gaussian distribution is corrupted by sensor blockage or target constraints. Based upon the proven concept of the chi 2 metric, a straightforward fuzzy-logic-based association method is developed that can emulate this metric for Gaussian measurements but can be modified to address problems where the Gaussian assumption on the track and/or measurement is not appropriate</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2006.887037</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2006-12, Vol.55 (6), p.2292-2303 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_4014738 |
source | IEEE Explore |
subjects | Approximation Blockage Correlation data association Density functional theory Fuzzy logic Gaussian Gaussian distribution Instrumentation Intelligent sensors intelligent systems Measurement uncertainty multisensor systems Normal distribution Random variables Sensor fusion Sensor phenomena and characterization Sensor systems Sensors Studies Target tracking tracking |
title | Data Association for Multiple Sensor Types Using Fuzzy Logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Association%20for%20Multiple%20Sensor%20Types%20Using%20Fuzzy%20Logic&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Stubberud,%20S.C.&rft.date=2006-12-01&rft.volume=55&rft.issue=6&rft.spage=2292&rft.epage=2303&rft.pages=2292-2303&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2006.887037&rft_dat=%3Cproquest_RIE%3E2340323881%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865155399&rft_id=info:pmid/&rft_ieee_id=4014738&rfr_iscdi=true |