On the complexity of hypothesis space and the sample complexity for machine learning

The problem of learning a concept from examples in the model introduced by Valiant (1984) is discussed. According to the traditional ways of thinking, it is assumed that the learnability is independent of the occurrence probability of instance. By utilizing this probability, we propose the metric as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nakazawa, M., Kohnosu, T., Matsushima, T., Hirasawa, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137 vol.1
container_issue
container_start_page 132
container_title
container_volume 1
creator Nakazawa, M.
Kohnosu, T.
Matsushima, T.
Hirasawa, S.
description The problem of learning a concept from examples in the model introduced by Valiant (1984) is discussed. According to the traditional ways of thinking, it is assumed that the learnability is independent of the occurrence probability of instance. By utilizing this probability, we propose the metric as a new measure to determine the complexity of hypothesis space. The metric measures the hardness of discrimination between hypotheses. Furthermore, we obtain the average metric dependent on prior information. This metric is the measure of complexity for hypothesis space in the average. Similarly in the worst case, we obtain the minimum metric. We make clear the relationship between these measures and the Vapnik-Chervonenkis (VC) dimension. Finally, we show the upper bound on sample complexity utilizing the metric. This results can be applied in the discussion on the learnability of the class with an infinite VC dimension.< >
doi_str_mv 10.1109/ICSMC.1994.399824
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_399824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>399824</ieee_id><sourcerecordid>399824</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-967495fc7796c8659fe7650165585187b986dcb6426861bcc03fa8de7e47263f3</originalsourceid><addsrcrecordid>eNpNj8tKxDAYhQMiKGMfQFd5gdakuf5LKV4GRmbhuB7S9I-NTC80Xdi3tzouPBw4cPg4cAi55azgnMH9tnp7rQoOIAsBYEt5QTIwlq0WJS_BXpEspU-2Siolubkmh31P5xapH7rxhF9xXugQaLuMw9qmmGganUfq-uYXS-4H-0-HYaKd823skZ7QTX3sP27IZXCnhNlfbsj70-Ohesl3--dt9bDLI2dyzkEbCSp4Y0B7qxUENFoxrpWyiltTg9WNr7UstdW89p6J4GyDBqUptQhiQ-7OuxERj-MUOzctx_N18Q0_3U8N</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the complexity of hypothesis space and the sample complexity for machine learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nakazawa, M. ; Kohnosu, T. ; Matsushima, T. ; Hirasawa, S.</creator><creatorcontrib>Nakazawa, M. ; Kohnosu, T. ; Matsushima, T. ; Hirasawa, S.</creatorcontrib><description>The problem of learning a concept from examples in the model introduced by Valiant (1984) is discussed. According to the traditional ways of thinking, it is assumed that the learnability is independent of the occurrence probability of instance. By utilizing this probability, we propose the metric as a new measure to determine the complexity of hypothesis space. The metric measures the hardness of discrimination between hypotheses. Furthermore, we obtain the average metric dependent on prior information. This metric is the measure of complexity for hypothesis space in the average. Similarly in the worst case, we obtain the minimum metric. We make clear the relationship between these measures and the Vapnik-Chervonenkis (VC) dimension. Finally, we show the upper bound on sample complexity utilizing the metric. This results can be applied in the discussion on the learnability of the class with an infinite VC dimension.&lt; &gt;</description><identifier>ISBN: 9780780321298</identifier><identifier>ISBN: 0780321294</identifier><identifier>DOI: 10.1109/ICSMC.1994.399824</identifier><language>eng</language><publisher>IEEE</publisher><subject>Engineering management ; Extraterrestrial measurements ; Industrial engineering ; Machine learning ; Telecommunications ; Upper bound ; Virtual colonoscopy</subject><ispartof>Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 1994, Vol.1, p.132-137 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/399824$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/399824$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nakazawa, M.</creatorcontrib><creatorcontrib>Kohnosu, T.</creatorcontrib><creatorcontrib>Matsushima, T.</creatorcontrib><creatorcontrib>Hirasawa, S.</creatorcontrib><title>On the complexity of hypothesis space and the sample complexity for machine learning</title><title>Proceedings of IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The problem of learning a concept from examples in the model introduced by Valiant (1984) is discussed. According to the traditional ways of thinking, it is assumed that the learnability is independent of the occurrence probability of instance. By utilizing this probability, we propose the metric as a new measure to determine the complexity of hypothesis space. The metric measures the hardness of discrimination between hypotheses. Furthermore, we obtain the average metric dependent on prior information. This metric is the measure of complexity for hypothesis space in the average. Similarly in the worst case, we obtain the minimum metric. We make clear the relationship between these measures and the Vapnik-Chervonenkis (VC) dimension. Finally, we show the upper bound on sample complexity utilizing the metric. This results can be applied in the discussion on the learnability of the class with an infinite VC dimension.&lt; &gt;</description><subject>Engineering management</subject><subject>Extraterrestrial measurements</subject><subject>Industrial engineering</subject><subject>Machine learning</subject><subject>Telecommunications</subject><subject>Upper bound</subject><subject>Virtual colonoscopy</subject><isbn>9780780321298</isbn><isbn>0780321294</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNj8tKxDAYhQMiKGMfQFd5gdakuf5LKV4GRmbhuB7S9I-NTC80Xdi3tzouPBw4cPg4cAi55azgnMH9tnp7rQoOIAsBYEt5QTIwlq0WJS_BXpEspU-2Siolubkmh31P5xapH7rxhF9xXugQaLuMw9qmmGganUfq-uYXS-4H-0-HYaKd823skZ7QTX3sP27IZXCnhNlfbsj70-Ohesl3--dt9bDLI2dyzkEbCSp4Y0B7qxUENFoxrpWyiltTg9WNr7UstdW89p6J4GyDBqUptQhiQ-7OuxERj-MUOzctx_N18Q0_3U8N</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Nakazawa, M.</creator><creator>Kohnosu, T.</creator><creator>Matsushima, T.</creator><creator>Hirasawa, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>On the complexity of hypothesis space and the sample complexity for machine learning</title><author>Nakazawa, M. ; Kohnosu, T. ; Matsushima, T. ; Hirasawa, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-967495fc7796c8659fe7650165585187b986dcb6426861bcc03fa8de7e47263f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Engineering management</topic><topic>Extraterrestrial measurements</topic><topic>Industrial engineering</topic><topic>Machine learning</topic><topic>Telecommunications</topic><topic>Upper bound</topic><topic>Virtual colonoscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakazawa, M.</creatorcontrib><creatorcontrib>Kohnosu, T.</creatorcontrib><creatorcontrib>Matsushima, T.</creatorcontrib><creatorcontrib>Hirasawa, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakazawa, M.</au><au>Kohnosu, T.</au><au>Matsushima, T.</au><au>Hirasawa, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the complexity of hypothesis space and the sample complexity for machine learning</atitle><btitle>Proceedings of IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>1994</date><risdate>1994</risdate><volume>1</volume><spage>132</spage><epage>137 vol.1</epage><pages>132-137 vol.1</pages><isbn>9780780321298</isbn><isbn>0780321294</isbn><abstract>The problem of learning a concept from examples in the model introduced by Valiant (1984) is discussed. According to the traditional ways of thinking, it is assumed that the learnability is independent of the occurrence probability of instance. By utilizing this probability, we propose the metric as a new measure to determine the complexity of hypothesis space. The metric measures the hardness of discrimination between hypotheses. Furthermore, we obtain the average metric dependent on prior information. This metric is the measure of complexity for hypothesis space in the average. Similarly in the worst case, we obtain the minimum metric. We make clear the relationship between these measures and the Vapnik-Chervonenkis (VC) dimension. Finally, we show the upper bound on sample complexity utilizing the metric. This results can be applied in the discussion on the learnability of the class with an infinite VC dimension.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.1994.399824</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780321298
ispartof Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 1994, Vol.1, p.132-137 vol.1
issn
language eng
recordid cdi_ieee_primary_399824
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Engineering management
Extraterrestrial measurements
Industrial engineering
Machine learning
Telecommunications
Upper bound
Virtual colonoscopy
title On the complexity of hypothesis space and the sample complexity for machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20complexity%20of%20hypothesis%20space%20and%20the%20sample%20complexity%20for%20machine%20learning&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Nakazawa,%20M.&rft.date=1994&rft.volume=1&rft.spage=132&rft.epage=137%20vol.1&rft.pages=132-137%20vol.1&rft.isbn=9780780321298&rft.isbn_list=0780321294&rft_id=info:doi/10.1109/ICSMC.1994.399824&rft_dat=%3Cieee_6IE%3E399824%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=399824&rfr_iscdi=true