Neural network based torque ripple minimisation in a switched reluctance motor
This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neura...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1231 vol.2 |
---|---|
container_issue | |
container_start_page | 1226 |
container_title | |
container_volume | 2 |
creator | O'Donovan, J.G. Roche, P.J. Kavanagh, R.C. Egan, M.G. Murphy, J.M.D. |
description | This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.< > |
doi_str_mv | 10.1109/IECON.1994.397968 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_397968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>397968</ieee_id><sourcerecordid>397968</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-b7ed00821735af9f3af02e3f3f253f87af86a8613ad58beff78e5d244ca1cfd93</originalsourceid><addsrcrecordid>eNotj81KxDAUhQMiqOM8gK7yAq1Jb9skSymjDgydja6H2_YGo_0zSRl8ewvj2ZzN9x04jD1IkUopzNN-Vx3rVBqTp2CUKfUVuxNKC5CQabhh2xC-xJq8kEroW1bXtHjs-UjxPPlv3mCgjsfJ_yzEvZvnnvjgRje4gNFNI3cjRx7OLrafK-ipX9qIY7tS02rds2uLfaDtf2_Yx8vuvXpLDsfXffV8SJwUeUwaRZ0QOpMKCrTGAlqREViwWQFWK7S6RF1KwK7QDVmrNBVdluctytZ2Bjbs8bLriOg0ezeg_z1dHsMfF5ROOg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network based torque ripple minimisation in a switched reluctance motor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>O'Donovan, J.G. ; Roche, P.J. ; Kavanagh, R.C. ; Egan, M.G. ; Murphy, J.M.D.</creator><creatorcontrib>O'Donovan, J.G. ; Roche, P.J. ; Kavanagh, R.C. ; Egan, M.G. ; Murphy, J.M.D.</creatorcontrib><description>This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.< ></description><identifier>ISBN: 0780313283</identifier><identifier>ISBN: 9780780313286</identifier><identifier>DOI: 10.1109/IECON.1994.397968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Couplings ; Machine learning ; Magnetic flux ; Neural networks ; Reluctance motors ; Rotors ; Saturation magnetization ; Stators ; Torque</subject><ispartof>Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, Vol.2, p.1226-1231 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/397968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/397968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>O'Donovan, J.G.</creatorcontrib><creatorcontrib>Roche, P.J.</creatorcontrib><creatorcontrib>Kavanagh, R.C.</creatorcontrib><creatorcontrib>Egan, M.G.</creatorcontrib><creatorcontrib>Murphy, J.M.D.</creatorcontrib><title>Neural network based torque ripple minimisation in a switched reluctance motor</title><title>Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics</title><addtitle>IECON</addtitle><description>This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.< ></description><subject>Artificial neural networks</subject><subject>Couplings</subject><subject>Machine learning</subject><subject>Magnetic flux</subject><subject>Neural networks</subject><subject>Reluctance motors</subject><subject>Rotors</subject><subject>Saturation magnetization</subject><subject>Stators</subject><subject>Torque</subject><isbn>0780313283</isbn><isbn>9780780313286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUhQMiqOM8gK7yAq1Jb9skSymjDgydja6H2_YGo_0zSRl8ewvj2ZzN9x04jD1IkUopzNN-Vx3rVBqTp2CUKfUVuxNKC5CQabhh2xC-xJq8kEroW1bXtHjs-UjxPPlv3mCgjsfJ_yzEvZvnnvjgRje4gNFNI3cjRx7OLrafK-ipX9qIY7tS02rds2uLfaDtf2_Yx8vuvXpLDsfXffV8SJwUeUwaRZ0QOpMKCrTGAlqREViwWQFWK7S6RF1KwK7QDVmrNBVdluctytZ2Bjbs8bLriOg0ezeg_z1dHsMfF5ROOg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>O'Donovan, J.G.</creator><creator>Roche, P.J.</creator><creator>Kavanagh, R.C.</creator><creator>Egan, M.G.</creator><creator>Murphy, J.M.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Neural network based torque ripple minimisation in a switched reluctance motor</title><author>O'Donovan, J.G. ; Roche, P.J. ; Kavanagh, R.C. ; Egan, M.G. ; Murphy, J.M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-b7ed00821735af9f3af02e3f3f253f87af86a8613ad58beff78e5d244ca1cfd93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Artificial neural networks</topic><topic>Couplings</topic><topic>Machine learning</topic><topic>Magnetic flux</topic><topic>Neural networks</topic><topic>Reluctance motors</topic><topic>Rotors</topic><topic>Saturation magnetization</topic><topic>Stators</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Donovan, J.G.</creatorcontrib><creatorcontrib>Roche, P.J.</creatorcontrib><creatorcontrib>Kavanagh, R.C.</creatorcontrib><creatorcontrib>Egan, M.G.</creatorcontrib><creatorcontrib>Murphy, J.M.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>O'Donovan, J.G.</au><au>Roche, P.J.</au><au>Kavanagh, R.C.</au><au>Egan, M.G.</au><au>Murphy, J.M.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network based torque ripple minimisation in a switched reluctance motor</atitle><btitle>Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics</btitle><stitle>IECON</stitle><date>1994</date><risdate>1994</risdate><volume>2</volume><spage>1226</spage><epage>1231 vol.2</epage><pages>1226-1231 vol.2</pages><isbn>0780313283</isbn><isbn>9780780313286</isbn><abstract>This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.< ></abstract><pub>IEEE</pub><doi>10.1109/IECON.1994.397968</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780313283 |
ispartof | Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, Vol.2, p.1226-1231 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_397968 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Couplings Machine learning Magnetic flux Neural networks Reluctance motors Rotors Saturation magnetization Stators Torque |
title | Neural network based torque ripple minimisation in a switched reluctance motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20based%20torque%20ripple%20minimisation%20in%20a%20switched%20reluctance%20motor&rft.btitle=Proceedings%20of%20IECON'94%20-%2020th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics&rft.au=O'Donovan,%20J.G.&rft.date=1994&rft.volume=2&rft.spage=1226&rft.epage=1231%20vol.2&rft.pages=1226-1231%20vol.2&rft.isbn=0780313283&rft.isbn_list=9780780313286&rft_id=info:doi/10.1109/IECON.1994.397968&rft_dat=%3Cieee_6IE%3E397968%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=397968&rfr_iscdi=true |