Neural network based torque ripple minimisation in a switched reluctance motor

This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: O'Donovan, J.G., Roche, P.J., Kavanagh, R.C., Egan, M.G., Murphy, J.M.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1231 vol.2
container_issue
container_start_page 1226
container_title
container_volume 2
creator O'Donovan, J.G.
Roche, P.J.
Kavanagh, R.C.
Egan, M.G.
Murphy, J.M.D.
description This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.< >
doi_str_mv 10.1109/IECON.1994.397968
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_397968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>397968</ieee_id><sourcerecordid>397968</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-b7ed00821735af9f3af02e3f3f253f87af86a8613ad58beff78e5d244ca1cfd93</originalsourceid><addsrcrecordid>eNotj81KxDAUhQMiqOM8gK7yAq1Jb9skSymjDgydja6H2_YGo_0zSRl8ewvj2ZzN9x04jD1IkUopzNN-Vx3rVBqTp2CUKfUVuxNKC5CQabhh2xC-xJq8kEroW1bXtHjs-UjxPPlv3mCgjsfJ_yzEvZvnnvjgRje4gNFNI3cjRx7OLrafK-ipX9qIY7tS02rds2uLfaDtf2_Yx8vuvXpLDsfXffV8SJwUeUwaRZ0QOpMKCrTGAlqREViwWQFWK7S6RF1KwK7QDVmrNBVdluctytZ2Bjbs8bLriOg0ezeg_z1dHsMfF5ROOg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network based torque ripple minimisation in a switched reluctance motor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>O'Donovan, J.G. ; Roche, P.J. ; Kavanagh, R.C. ; Egan, M.G. ; Murphy, J.M.D.</creator><creatorcontrib>O'Donovan, J.G. ; Roche, P.J. ; Kavanagh, R.C. ; Egan, M.G. ; Murphy, J.M.D.</creatorcontrib><description>This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.&lt; &gt;</description><identifier>ISBN: 0780313283</identifier><identifier>ISBN: 9780780313286</identifier><identifier>DOI: 10.1109/IECON.1994.397968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Couplings ; Machine learning ; Magnetic flux ; Neural networks ; Reluctance motors ; Rotors ; Saturation magnetization ; Stators ; Torque</subject><ispartof>Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, Vol.2, p.1226-1231 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/397968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/397968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>O'Donovan, J.G.</creatorcontrib><creatorcontrib>Roche, P.J.</creatorcontrib><creatorcontrib>Kavanagh, R.C.</creatorcontrib><creatorcontrib>Egan, M.G.</creatorcontrib><creatorcontrib>Murphy, J.M.D.</creatorcontrib><title>Neural network based torque ripple minimisation in a switched reluctance motor</title><title>Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics</title><addtitle>IECON</addtitle><description>This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.&lt; &gt;</description><subject>Artificial neural networks</subject><subject>Couplings</subject><subject>Machine learning</subject><subject>Magnetic flux</subject><subject>Neural networks</subject><subject>Reluctance motors</subject><subject>Rotors</subject><subject>Saturation magnetization</subject><subject>Stators</subject><subject>Torque</subject><isbn>0780313283</isbn><isbn>9780780313286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUhQMiqOM8gK7yAq1Jb9skSymjDgydja6H2_YGo_0zSRl8ewvj2ZzN9x04jD1IkUopzNN-Vx3rVBqTp2CUKfUVuxNKC5CQabhh2xC-xJq8kEroW1bXtHjs-UjxPPlv3mCgjsfJ_yzEvZvnnvjgRje4gNFNI3cjRx7OLrafK-ipX9qIY7tS02rds2uLfaDtf2_Yx8vuvXpLDsfXffV8SJwUeUwaRZ0QOpMKCrTGAlqREViwWQFWK7S6RF1KwK7QDVmrNBVdluctytZ2Bjbs8bLriOg0ezeg_z1dHsMfF5ROOg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>O'Donovan, J.G.</creator><creator>Roche, P.J.</creator><creator>Kavanagh, R.C.</creator><creator>Egan, M.G.</creator><creator>Murphy, J.M.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Neural network based torque ripple minimisation in a switched reluctance motor</title><author>O'Donovan, J.G. ; Roche, P.J. ; Kavanagh, R.C. ; Egan, M.G. ; Murphy, J.M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-b7ed00821735af9f3af02e3f3f253f87af86a8613ad58beff78e5d244ca1cfd93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Artificial neural networks</topic><topic>Couplings</topic><topic>Machine learning</topic><topic>Magnetic flux</topic><topic>Neural networks</topic><topic>Reluctance motors</topic><topic>Rotors</topic><topic>Saturation magnetization</topic><topic>Stators</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Donovan, J.G.</creatorcontrib><creatorcontrib>Roche, P.J.</creatorcontrib><creatorcontrib>Kavanagh, R.C.</creatorcontrib><creatorcontrib>Egan, M.G.</creatorcontrib><creatorcontrib>Murphy, J.M.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>O'Donovan, J.G.</au><au>Roche, P.J.</au><au>Kavanagh, R.C.</au><au>Egan, M.G.</au><au>Murphy, J.M.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network based torque ripple minimisation in a switched reluctance motor</atitle><btitle>Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics</btitle><stitle>IECON</stitle><date>1994</date><risdate>1994</risdate><volume>2</volume><spage>1226</spage><epage>1231 vol.2</epage><pages>1226-1231 vol.2</pages><isbn>0780313283</isbn><isbn>9780780313286</isbn><abstract>This paper presents an artificial neural network (ANN) solution to torque ripple reduction in a switched reluctance motor. Magnetic saturation together with salient stator and rotor poles give rise to a highly nonlinear torque/current/angle characteristic. The approach in this paper allows the neural network to be used to its full potential, that is, learning the nonlinear flux linkage characteristic while also incorporating a priori analytical knowledge of the torque production mechanism of the machine. This combination of neuro-learning and analytical insight results in a greatly simplified controller. Simulation results are presented to illustrate the performance of the proposed technique. Experimental results based on a floating point DSP processor are included.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/IECON.1994.397968</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780313283
ispartof Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, Vol.2, p.1226-1231 vol.2
issn
language eng
recordid cdi_ieee_primary_397968
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Couplings
Machine learning
Magnetic flux
Neural networks
Reluctance motors
Rotors
Saturation magnetization
Stators
Torque
title Neural network based torque ripple minimisation in a switched reluctance motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20based%20torque%20ripple%20minimisation%20in%20a%20switched%20reluctance%20motor&rft.btitle=Proceedings%20of%20IECON'94%20-%2020th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics&rft.au=O'Donovan,%20J.G.&rft.date=1994&rft.volume=2&rft.spage=1226&rft.epage=1231%20vol.2&rft.pages=1226-1231%20vol.2&rft.isbn=0780313283&rft.isbn_list=9780780313286&rft_id=info:doi/10.1109/IECON.1994.397968&rft_dat=%3Cieee_6IE%3E397968%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=397968&rfr_iscdi=true