Selecting the optimal number of components for a Gaussian mixture model
We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< >
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 393 |
container_title | |
container_volume | |
creator | McKenzie, P. Alder, M. |
description | We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< > |
doi_str_mv | 10.1109/ISIT.1994.394626 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_394626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>394626</ieee_id><sourcerecordid>394626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-bd20b7724a50ae44dd46f10983b94c4533a46c5d90432a0d45e9e280a8a28ebb3</originalsourceid><addsrcrecordid>eNotz81KxDAUBeCACOo4e3GVF2i9TW7bZCmD1sLALKb7IWluNdI_mhT07S2MZ3N2h-8w9pRBmmWgX-pz3aSZ1phKjYUobtgDlAqkgCxXd2wfwjdsQcxlCfesOlNPbfTjJ49fxKc5-sH0fFwHSwufOt5OwzyNNMbAu2nhhldmDcGbkQ_-J64L8WFy1D-y2870gfb_vWPN-1tz-EiOp6o-vB4Tr3RMrBNgy1KgycEQonNYdJtaSaux3UjSYNHmTgNKYcBhTpqEAqOMUGSt3LHn66wnosu8bNjl93J9Kv8AkT1Jjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selecting the optimal number of components for a Gaussian mixture model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>McKenzie, P. ; Alder, M.</creator><creatorcontrib>McKenzie, P. ; Alder, M.</creatorcontrib><description>We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< ></description><identifier>ISBN: 0780320158</identifier><identifier>ISBN: 9780780320154</identifier><identifier>DOI: 10.1109/ISIT.1994.394626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Australia ; Cost function ; Gaussian distribution ; Gaussian processes ; Information processing ; Intelligent systems ; Probability density function ; Probability distribution ; Random variables</subject><ispartof>Proceedings of 1994 IEEE International Symposium on Information Theory, 1994, p.393</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/394626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/394626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McKenzie, P.</creatorcontrib><creatorcontrib>Alder, M.</creatorcontrib><title>Selecting the optimal number of components for a Gaussian mixture model</title><title>Proceedings of 1994 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< ></description><subject>Algebra</subject><subject>Australia</subject><subject>Cost function</subject><subject>Gaussian distribution</subject><subject>Gaussian processes</subject><subject>Information processing</subject><subject>Intelligent systems</subject><subject>Probability density function</subject><subject>Probability distribution</subject><subject>Random variables</subject><isbn>0780320158</isbn><isbn>9780780320154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz81KxDAUBeCACOo4e3GVF2i9TW7bZCmD1sLALKb7IWluNdI_mhT07S2MZ3N2h-8w9pRBmmWgX-pz3aSZ1phKjYUobtgDlAqkgCxXd2wfwjdsQcxlCfesOlNPbfTjJ49fxKc5-sH0fFwHSwufOt5OwzyNNMbAu2nhhldmDcGbkQ_-J64L8WFy1D-y2870gfb_vWPN-1tz-EiOp6o-vB4Tr3RMrBNgy1KgycEQonNYdJtaSaux3UjSYNHmTgNKYcBhTpqEAqOMUGSt3LHn66wnosu8bNjl93J9Kv8AkT1Jjw</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>McKenzie, P.</creator><creator>Alder, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Selecting the optimal number of components for a Gaussian mixture model</title><author>McKenzie, P. ; Alder, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-bd20b7724a50ae44dd46f10983b94c4533a46c5d90432a0d45e9e280a8a28ebb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algebra</topic><topic>Australia</topic><topic>Cost function</topic><topic>Gaussian distribution</topic><topic>Gaussian processes</topic><topic>Information processing</topic><topic>Intelligent systems</topic><topic>Probability density function</topic><topic>Probability distribution</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>McKenzie, P.</creatorcontrib><creatorcontrib>Alder, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McKenzie, P.</au><au>Alder, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selecting the optimal number of components for a Gaussian mixture model</atitle><btitle>Proceedings of 1994 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>1994</date><risdate>1994</risdate><spage>393</spage><pages>393-</pages><isbn>0780320158</isbn><isbn>9780780320154</isbn><abstract>We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< ></abstract><pub>IEEE</pub><doi>10.1109/ISIT.1994.394626</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780320158 |
ispartof | Proceedings of 1994 IEEE International Symposium on Information Theory, 1994, p.393 |
issn | |
language | eng |
recordid | cdi_ieee_primary_394626 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra Australia Cost function Gaussian distribution Gaussian processes Information processing Intelligent systems Probability density function Probability distribution Random variables |
title | Selecting the optimal number of components for a Gaussian mixture model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selecting%20the%20optimal%20number%20of%20components%20for%20a%20Gaussian%20mixture%20model&rft.btitle=Proceedings%20of%201994%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=McKenzie,%20P.&rft.date=1994&rft.spage=393&rft.pages=393-&rft.isbn=0780320158&rft.isbn_list=9780780320154&rft_id=info:doi/10.1109/ISIT.1994.394626&rft_dat=%3Cieee_6IE%3E394626%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=394626&rfr_iscdi=true |