Selecting the optimal number of components for a Gaussian mixture model

We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< >

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McKenzie, P., Alder, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 393
container_title
container_volume
creator McKenzie, P.
Alder, M.
description We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.< >
doi_str_mv 10.1109/ISIT.1994.394626
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_394626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>394626</ieee_id><sourcerecordid>394626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-bd20b7724a50ae44dd46f10983b94c4533a46c5d90432a0d45e9e280a8a28ebb3</originalsourceid><addsrcrecordid>eNotz81KxDAUBeCACOo4e3GVF2i9TW7bZCmD1sLALKb7IWluNdI_mhT07S2MZ3N2h-8w9pRBmmWgX-pz3aSZ1phKjYUobtgDlAqkgCxXd2wfwjdsQcxlCfesOlNPbfTjJ49fxKc5-sH0fFwHSwufOt5OwzyNNMbAu2nhhldmDcGbkQ_-J64L8WFy1D-y2870gfb_vWPN-1tz-EiOp6o-vB4Tr3RMrBNgy1KgycEQonNYdJtaSaux3UjSYNHmTgNKYcBhTpqEAqOMUGSt3LHn66wnosu8bNjl93J9Kv8AkT1Jjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selecting the optimal number of components for a Gaussian mixture model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>McKenzie, P. ; Alder, M.</creator><creatorcontrib>McKenzie, P. ; Alder, M.</creatorcontrib><description>We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.&lt; &gt;</description><identifier>ISBN: 0780320158</identifier><identifier>ISBN: 9780780320154</identifier><identifier>DOI: 10.1109/ISIT.1994.394626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Australia ; Cost function ; Gaussian distribution ; Gaussian processes ; Information processing ; Intelligent systems ; Probability density function ; Probability distribution ; Random variables</subject><ispartof>Proceedings of 1994 IEEE International Symposium on Information Theory, 1994, p.393</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/394626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/394626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McKenzie, P.</creatorcontrib><creatorcontrib>Alder, M.</creatorcontrib><title>Selecting the optimal number of components for a Gaussian mixture model</title><title>Proceedings of 1994 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.&lt; &gt;</description><subject>Algebra</subject><subject>Australia</subject><subject>Cost function</subject><subject>Gaussian distribution</subject><subject>Gaussian processes</subject><subject>Information processing</subject><subject>Intelligent systems</subject><subject>Probability density function</subject><subject>Probability distribution</subject><subject>Random variables</subject><isbn>0780320158</isbn><isbn>9780780320154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz81KxDAUBeCACOo4e3GVF2i9TW7bZCmD1sLALKb7IWluNdI_mhT07S2MZ3N2h-8w9pRBmmWgX-pz3aSZ1phKjYUobtgDlAqkgCxXd2wfwjdsQcxlCfesOlNPbfTjJ49fxKc5-sH0fFwHSwufOt5OwzyNNMbAu2nhhldmDcGbkQ_-J64L8WFy1D-y2870gfb_vWPN-1tz-EiOp6o-vB4Tr3RMrBNgy1KgycEQonNYdJtaSaux3UjSYNHmTgNKYcBhTpqEAqOMUGSt3LHn66wnosu8bNjl93J9Kv8AkT1Jjw</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>McKenzie, P.</creator><creator>Alder, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Selecting the optimal number of components for a Gaussian mixture model</title><author>McKenzie, P. ; Alder, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-bd20b7724a50ae44dd46f10983b94c4533a46c5d90432a0d45e9e280a8a28ebb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algebra</topic><topic>Australia</topic><topic>Cost function</topic><topic>Gaussian distribution</topic><topic>Gaussian processes</topic><topic>Information processing</topic><topic>Intelligent systems</topic><topic>Probability density function</topic><topic>Probability distribution</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>McKenzie, P.</creatorcontrib><creatorcontrib>Alder, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McKenzie, P.</au><au>Alder, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selecting the optimal number of components for a Gaussian mixture model</atitle><btitle>Proceedings of 1994 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>1994</date><risdate>1994</risdate><spage>393</spage><pages>393-</pages><isbn>0780320158</isbn><isbn>9780780320154</isbn><abstract>We compare two approaches to determining the optimal number of component Gaussians to include in a Gaussian mixture model, the Akaike information criterion and the Rissanen (1989) minimum description length method.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ISIT.1994.394626</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780320158
ispartof Proceedings of 1994 IEEE International Symposium on Information Theory, 1994, p.393
issn
language eng
recordid cdi_ieee_primary_394626
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
Australia
Cost function
Gaussian distribution
Gaussian processes
Information processing
Intelligent systems
Probability density function
Probability distribution
Random variables
title Selecting the optimal number of components for a Gaussian mixture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selecting%20the%20optimal%20number%20of%20components%20for%20a%20Gaussian%20mixture%20model&rft.btitle=Proceedings%20of%201994%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=McKenzie,%20P.&rft.date=1994&rft.spage=393&rft.pages=393-&rft.isbn=0780320158&rft.isbn_list=9780780320154&rft_id=info:doi/10.1109/ISIT.1994.394626&rft_dat=%3Cieee_6IE%3E394626%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=394626&rfr_iscdi=true