Estimation of the position of electrocortical generators via subspace techniques

There are a number of approaches to the application of subspace techniques for solving spectral estimation problems. These approaches are derived from the covariance matrix which is constructed from incoming data. The covariance matrix can be broken down through the use of appropriate matrix propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Klimovski, D., Sergejew, A.A., Cricenti, A.L., Egan, G.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page IV/192 vol.4
container_issue
container_start_page IV/189
container_title
container_volume iv
creator Klimovski, D.
Sergejew, A.A.
Cricenti, A.L.
Egan, G.K.
description There are a number of approaches to the application of subspace techniques for solving spectral estimation problems. These approaches are derived from the covariance matrix which is constructed from incoming data. The covariance matrix can be broken down through the use of appropriate matrix properties and eigen-decomposition techniques into two subspaces. The performance of three traditional algorithms which incorporate subspace techniques in direction of arrival are evaluated under both white and 1/f noise conditions. 1/f noise is chosen because it is typical of the EEG signals. Simulation results suggest that the Johnson and DeGraaf (1982) direction finding algorithm performs best under both noise environments. A typical sample of EEG data was used to evaluate the performance of the three algorithms. The Johnson and DeGraaf algorithm gives estimates for the direction of the signal which approximately agree with the anatomical locations of possible electrocortical generators.< >
doi_str_mv 10.1109/ICASSP.1994.389746
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_389746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>389746</ieee_id><sourcerecordid>389746</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-5ae0939cc2cbc524906b28300f85205bac1cef9c232e4114a6db1551c2e1ccc03</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhQd_wFj7Al3NCyTeOz9JZimlWqFgoV24K5PrjR2pTcxMBd_eQPVsDmdz-M4RYoZQIIK7f54_bDbrAp0zha5dZcoLkSlduRwdvF6KW6hq0FhVFq5EhlZBXqJxN2Ia4weMMtYaNJlYL2IKnz6F7ii7VqY9y76L4T_zgSkNHXVDCuQP8p2PPPjUDVF-By_jqYm9J5aJaX8MXyeOd-K69YfI0z-fiO3jYjtf5quXp5F6lYfapdx6BqcdkaKGrDIOykbVGqCtR1bbeELi1pHSig2i8eVbg9YiKUYiAj0Rs3NtYOZdP4wbhp_d-Qr9C0dXUns</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of the position of electrocortical generators via subspace techniques</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Klimovski, D. ; Sergejew, A.A. ; Cricenti, A.L. ; Egan, G.K.</creator><creatorcontrib>Klimovski, D. ; Sergejew, A.A. ; Cricenti, A.L. ; Egan, G.K.</creatorcontrib><description>There are a number of approaches to the application of subspace techniques for solving spectral estimation problems. These approaches are derived from the covariance matrix which is constructed from incoming data. The covariance matrix can be broken down through the use of appropriate matrix properties and eigen-decomposition techniques into two subspaces. The performance of three traditional algorithms which incorporate subspace techniques in direction of arrival are evaluated under both white and 1/f noise conditions. 1/f noise is chosen because it is typical of the EEG signals. Simulation results suggest that the Johnson and DeGraaf (1982) direction finding algorithm performs best under both noise environments. A typical sample of EEG data was used to evaluate the performance of the three algorithms. The Johnson and DeGraaf algorithm gives estimates for the direction of the signal which approximately agree with the anatomical locations of possible electrocortical generators.&lt; &gt;</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780317750</identifier><identifier>ISBN: 9780780317758</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1994.389746</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Covariance matrix ; Electroencephalography ; Gaussian noise ; Laboratories ; Sensor arrays ; Sensor systems ; Signal generators ; Signal processing ; Working environment noise</subject><ispartof>Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing, 1994, Vol.iv, p.IV/189-IV/192 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/389746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/389746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klimovski, D.</creatorcontrib><creatorcontrib>Sergejew, A.A.</creatorcontrib><creatorcontrib>Cricenti, A.L.</creatorcontrib><creatorcontrib>Egan, G.K.</creatorcontrib><title>Estimation of the position of electrocortical generators via subspace techniques</title><title>Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>There are a number of approaches to the application of subspace techniques for solving spectral estimation problems. These approaches are derived from the covariance matrix which is constructed from incoming data. The covariance matrix can be broken down through the use of appropriate matrix properties and eigen-decomposition techniques into two subspaces. The performance of three traditional algorithms which incorporate subspace techniques in direction of arrival are evaluated under both white and 1/f noise conditions. 1/f noise is chosen because it is typical of the EEG signals. Simulation results suggest that the Johnson and DeGraaf (1982) direction finding algorithm performs best under both noise environments. A typical sample of EEG data was used to evaluate the performance of the three algorithms. The Johnson and DeGraaf algorithm gives estimates for the direction of the signal which approximately agree with the anatomical locations of possible electrocortical generators.&lt; &gt;</description><subject>Brain modeling</subject><subject>Covariance matrix</subject><subject>Electroencephalography</subject><subject>Gaussian noise</subject><subject>Laboratories</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Working environment noise</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780317750</isbn><isbn>9780780317758</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhQd_wFj7Al3NCyTeOz9JZimlWqFgoV24K5PrjR2pTcxMBd_eQPVsDmdz-M4RYoZQIIK7f54_bDbrAp0zha5dZcoLkSlduRwdvF6KW6hq0FhVFq5EhlZBXqJxN2Ia4weMMtYaNJlYL2IKnz6F7ii7VqY9y76L4T_zgSkNHXVDCuQP8p2PPPjUDVF-By_jqYm9J5aJaX8MXyeOd-K69YfI0z-fiO3jYjtf5quXp5F6lYfapdx6BqcdkaKGrDIOykbVGqCtR1bbeELi1pHSig2i8eVbg9YiKUYiAj0Rs3NtYOZdP4wbhp_d-Qr9C0dXUns</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Klimovski, D.</creator><creator>Sergejew, A.A.</creator><creator>Cricenti, A.L.</creator><creator>Egan, G.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Estimation of the position of electrocortical generators via subspace techniques</title><author>Klimovski, D. ; Sergejew, A.A. ; Cricenti, A.L. ; Egan, G.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-5ae0939cc2cbc524906b28300f85205bac1cef9c232e4114a6db1551c2e1ccc03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Brain modeling</topic><topic>Covariance matrix</topic><topic>Electroencephalography</topic><topic>Gaussian noise</topic><topic>Laboratories</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Klimovski, D.</creatorcontrib><creatorcontrib>Sergejew, A.A.</creatorcontrib><creatorcontrib>Cricenti, A.L.</creatorcontrib><creatorcontrib>Egan, G.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klimovski, D.</au><au>Sergejew, A.A.</au><au>Cricenti, A.L.</au><au>Egan, G.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of the position of electrocortical generators via subspace techniques</atitle><btitle>Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>1994</date><risdate>1994</risdate><volume>iv</volume><spage>IV/189</spage><epage>IV/192 vol.4</epage><pages>IV/189-IV/192 vol.4</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780317750</isbn><isbn>9780780317758</isbn><abstract>There are a number of approaches to the application of subspace techniques for solving spectral estimation problems. These approaches are derived from the covariance matrix which is constructed from incoming data. The covariance matrix can be broken down through the use of appropriate matrix properties and eigen-decomposition techniques into two subspaces. The performance of three traditional algorithms which incorporate subspace techniques in direction of arrival are evaluated under both white and 1/f noise conditions. 1/f noise is chosen because it is typical of the EEG signals. Simulation results suggest that the Johnson and DeGraaf (1982) direction finding algorithm performs best under both noise environments. A typical sample of EEG data was used to evaluate the performance of the three algorithms. The Johnson and DeGraaf algorithm gives estimates for the direction of the signal which approximately agree with the anatomical locations of possible electrocortical generators.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1994.389746</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing, 1994, Vol.iv, p.IV/189-IV/192 vol.4
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_389746
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain modeling
Covariance matrix
Electroencephalography
Gaussian noise
Laboratories
Sensor arrays
Sensor systems
Signal generators
Signal processing
Working environment noise
title Estimation of the position of electrocortical generators via subspace techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20the%20position%20of%20electrocortical%20generators%20via%20subspace%20techniques&rft.btitle=Proceedings%20of%20ICASSP%20'94.%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Klimovski,%20D.&rft.date=1994&rft.volume=iv&rft.spage=IV/189&rft.epage=IV/192%20vol.4&rft.pages=IV/189-IV/192%20vol.4&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780317750&rft.isbn_list=9780780317758&rft_id=info:doi/10.1109/ICASSP.1994.389746&rft_dat=%3Cieee_6IE%3E389746%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=389746&rfr_iscdi=true