Statistical design using variable parameter variances and application to cellular neural networks
Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | |
container_start_page | 147 |
container_title | |
container_volume | |
creator | Fajfar, I. Bratkovic, F. |
description | Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.< > |
doi_str_mv | 10.1109/CNNA.1994.381693 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_381693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>381693</ieee_id><sourcerecordid>381693</sourcerecordid><originalsourceid>FETCH-ieee_primary_3816933</originalsourceid><addsrcrecordid>eNp9TsEKwjAUK4ig6O7i6f2As13FrUcRxZMXvY_nfI5q1422U_x7C3o2BAIJCWFsJngqBFfL7fG4SYVSq1QWYq3kgCUqL3ikzHjO5Ygl3t95xErmGS_GDE8Bg_ZBV2jgSl7XFnqvbQ1PdBovhqBDhw0Fcl_LVuQB7RWw60ysBd1aCC1UZExv0IGl3sUxS-HVuoefsuENjafkpxM23-_O28NCE1HZOd2ge5ffv_Jv-AEYp0ZB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical design using variable parameter variances and application to cellular neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fajfar, I. ; Bratkovic, F.</creator><creatorcontrib>Fajfar, I. ; Bratkovic, F.</creatorcontrib><description>Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.< ></description><identifier>ISBN: 9780780320703</identifier><identifier>ISBN: 0780320700</identifier><identifier>DOI: 10.1109/CNNA.1994.381693</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Cellular neural networks ; Convergence ; Design methodology ; Electronic mail ; Neural networks ; Probability ; Robustness ; Statistical distributions ; Vectors</subject><ispartof>Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94), 1994, p.147-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/381693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/381693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fajfar, I.</creatorcontrib><creatorcontrib>Bratkovic, F.</creatorcontrib><title>Statistical design using variable parameter variances and application to cellular neural networks</title><title>Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)</title><addtitle>CNNA</addtitle><description>Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.< ></description><subject>Application software</subject><subject>Cellular neural networks</subject><subject>Convergence</subject><subject>Design methodology</subject><subject>Electronic mail</subject><subject>Neural networks</subject><subject>Probability</subject><subject>Robustness</subject><subject>Statistical distributions</subject><subject>Vectors</subject><isbn>9780780320703</isbn><isbn>0780320700</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9TsEKwjAUK4ig6O7i6f2As13FrUcRxZMXvY_nfI5q1422U_x7C3o2BAIJCWFsJngqBFfL7fG4SYVSq1QWYq3kgCUqL3ikzHjO5Ygl3t95xErmGS_GDE8Bg_ZBV2jgSl7XFnqvbQ1PdBovhqBDhw0Fcl_LVuQB7RWw60ysBd1aCC1UZExv0IGl3sUxS-HVuoefsuENjafkpxM23-_O28NCE1HZOd2ge5ffv_Jv-AEYp0ZB</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Fajfar, I.</creator><creator>Bratkovic, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Statistical design using variable parameter variances and application to cellular neural networks</title><author>Fajfar, I. ; Bratkovic, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_3816933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Application software</topic><topic>Cellular neural networks</topic><topic>Convergence</topic><topic>Design methodology</topic><topic>Electronic mail</topic><topic>Neural networks</topic><topic>Probability</topic><topic>Robustness</topic><topic>Statistical distributions</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Fajfar, I.</creatorcontrib><creatorcontrib>Bratkovic, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fajfar, I.</au><au>Bratkovic, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical design using variable parameter variances and application to cellular neural networks</atitle><btitle>Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)</btitle><stitle>CNNA</stitle><date>1994</date><risdate>1994</risdate><spage>147</spage><epage>152</epage><pages>147-152</pages><isbn>9780780320703</isbn><isbn>0780320700</isbn><abstract>Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.< ></abstract><pub>IEEE</pub><doi>10.1109/CNNA.1994.381693</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780320703 |
ispartof | Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94), 1994, p.147-152 |
issn | |
language | eng |
recordid | cdi_ieee_primary_381693 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Cellular neural networks Convergence Design methodology Electronic mail Neural networks Probability Robustness Statistical distributions Vectors |
title | Statistical design using variable parameter variances and application to cellular neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20design%20using%20variable%20parameter%20variances%20and%20application%20to%20cellular%20neural%20networks&rft.btitle=Proceedings%20of%20the%20Third%20IEEE%20International%20Workshop%20on%20Cellular%20Neural%20Networks%20and%20their%20Applications%20(CNNA-94)&rft.au=Fajfar,%20I.&rft.date=1994&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.isbn=9780780320703&rft.isbn_list=0780320700&rft_id=info:doi/10.1109/CNNA.1994.381693&rft_dat=%3Cieee_6IE%3E381693%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=381693&rfr_iscdi=true |