Statistical design using variable parameter variances and application to cellular neural networks

Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fajfar, I., Bratkovic, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 147
container_title
container_volume
creator Fajfar, I.
Bratkovic, F.
description Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.< >
doi_str_mv 10.1109/CNNA.1994.381693
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_381693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>381693</ieee_id><sourcerecordid>381693</sourcerecordid><originalsourceid>FETCH-ieee_primary_3816933</originalsourceid><addsrcrecordid>eNp9TsEKwjAUK4ig6O7i6f2As13FrUcRxZMXvY_nfI5q1422U_x7C3o2BAIJCWFsJngqBFfL7fG4SYVSq1QWYq3kgCUqL3ikzHjO5Ygl3t95xErmGS_GDE8Bg_ZBV2jgSl7XFnqvbQ1PdBovhqBDhw0Fcl_LVuQB7RWw60ysBd1aCC1UZExv0IGl3sUxS-HVuoefsuENjafkpxM23-_O28NCE1HZOd2ge5ffv_Jv-AEYp0ZB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical design using variable parameter variances and application to cellular neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fajfar, I. ; Bratkovic, F.</creator><creatorcontrib>Fajfar, I. ; Bratkovic, F.</creatorcontrib><description>Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.&lt; &gt;</description><identifier>ISBN: 9780780320703</identifier><identifier>ISBN: 0780320700</identifier><identifier>DOI: 10.1109/CNNA.1994.381693</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Cellular neural networks ; Convergence ; Design methodology ; Electronic mail ; Neural networks ; Probability ; Robustness ; Statistical distributions ; Vectors</subject><ispartof>Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94), 1994, p.147-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/381693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/381693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fajfar, I.</creatorcontrib><creatorcontrib>Bratkovic, F.</creatorcontrib><title>Statistical design using variable parameter variances and application to cellular neural networks</title><title>Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)</title><addtitle>CNNA</addtitle><description>Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.&lt; &gt;</description><subject>Application software</subject><subject>Cellular neural networks</subject><subject>Convergence</subject><subject>Design methodology</subject><subject>Electronic mail</subject><subject>Neural networks</subject><subject>Probability</subject><subject>Robustness</subject><subject>Statistical distributions</subject><subject>Vectors</subject><isbn>9780780320703</isbn><isbn>0780320700</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9TsEKwjAUK4ig6O7i6f2As13FrUcRxZMXvY_nfI5q1422U_x7C3o2BAIJCWFsJngqBFfL7fG4SYVSq1QWYq3kgCUqL3ikzHjO5Ygl3t95xErmGS_GDE8Bg_ZBV2jgSl7XFnqvbQ1PdBovhqBDhw0Fcl_LVuQB7RWw60ysBd1aCC1UZExv0IGl3sUxS-HVuoefsuENjafkpxM23-_O28NCE1HZOd2ge5ffv_Jv-AEYp0ZB</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Fajfar, I.</creator><creator>Bratkovic, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Statistical design using variable parameter variances and application to cellular neural networks</title><author>Fajfar, I. ; Bratkovic, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_3816933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Application software</topic><topic>Cellular neural networks</topic><topic>Convergence</topic><topic>Design methodology</topic><topic>Electronic mail</topic><topic>Neural networks</topic><topic>Probability</topic><topic>Robustness</topic><topic>Statistical distributions</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Fajfar, I.</creatorcontrib><creatorcontrib>Bratkovic, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fajfar, I.</au><au>Bratkovic, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical design using variable parameter variances and application to cellular neural networks</atitle><btitle>Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)</btitle><stitle>CNNA</stitle><date>1994</date><risdate>1994</risdate><spage>147</spage><epage>152</epage><pages>147-152</pages><isbn>9780780320703</isbn><isbn>0780320700</isbn><abstract>Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/CNNA.1994.381693</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780320703
ispartof Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94), 1994, p.147-152
issn
language eng
recordid cdi_ieee_primary_381693
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Cellular neural networks
Convergence
Design methodology
Electronic mail
Neural networks
Probability
Robustness
Statistical distributions
Vectors
title Statistical design using variable parameter variances and application to cellular neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20design%20using%20variable%20parameter%20variances%20and%20application%20to%20cellular%20neural%20networks&rft.btitle=Proceedings%20of%20the%20Third%20IEEE%20International%20Workshop%20on%20Cellular%20Neural%20Networks%20and%20their%20Applications%20(CNNA-94)&rft.au=Fajfar,%20I.&rft.date=1994&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.isbn=9780780320703&rft.isbn_list=0780320700&rft_id=info:doi/10.1109/CNNA.1994.381693&rft_dat=%3Cieee_6IE%3E381693%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=381693&rfr_iscdi=true