An equivalent Markov model for burst errors in digital channels

A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 1995-02, Vol.43 (2/3/4), p.1347-1355
Hauptverfasser: Sivaprakasam, S., Shanmugan, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1355
container_issue 2/3/4
container_start_page 1347
container_title IEEE transactions on communications
container_volume 43
creator Sivaprakasam, S.
Shanmugan, K.S.
description A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.< >
doi_str_mv 10.1109/26.380185
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_380185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>380185</ieee_id><sourcerecordid>28491447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhS0EEqUwsDJ5QEgMKdfPJBNCFS-piAXmyLFvwOAmrZ1U4t_TKhVMR7rnu99wCDlnMGMMyhuuZ6IAVqgDMmFKFRkUKj8kE4ASMp3nxTE5SekLACQIMSG3dy3F9eA3JmDb0xcTv7sNXXYOA226SOshpp5ijF1M1LfU-Q_fm0Dtp2lbDOmUHDUmJDzb55S8P9y_zZ-yxevj8_xukVkBus-04AK1KRvnXG0bVvJS1zVYZNpI7jTTPOdcWlWDK3XOuN1eXa0KA0oaLsSUXI3eVezWA6a-WvpkMQTTYjekiheyZFLmW_B6BG3sUorYVKvolyb-VAyq3UQV19U40Za93EtNsiY00bTWp78HoTiTYqe8GDGPiP_t6PgFFAhszQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28491447</pqid></control><display><type>article</type><title>An equivalent Markov model for burst errors in digital channels</title><source>IEEE Xplore</source><creator>Sivaprakasam, S. ; Shanmugan, K.S.</creator><creatorcontrib>Sivaprakasam, S. ; Shanmugan, K.S.</creatorcontrib><description>A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.&lt; &gt;</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.380185</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Exact sciences and technology ; Hidden Markov models ; State estimation ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on communications, 1995-02, Vol.43 (2/3/4), p.1347-1355</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</citedby><cites>FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/380185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/380185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3521437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sivaprakasam, S.</creatorcontrib><creatorcontrib>Shanmugan, K.S.</creatorcontrib><title>An equivalent Markov model for burst errors in digital channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.&lt; &gt;</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>State estimation</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkDtPwzAUhS0EEqUwsDJ5QEgMKdfPJBNCFS-piAXmyLFvwOAmrZ1U4t_TKhVMR7rnu99wCDlnMGMMyhuuZ6IAVqgDMmFKFRkUKj8kE4ASMp3nxTE5SekLACQIMSG3dy3F9eA3JmDb0xcTv7sNXXYOA226SOshpp5ijF1M1LfU-Q_fm0Dtp2lbDOmUHDUmJDzb55S8P9y_zZ-yxevj8_xukVkBus-04AK1KRvnXG0bVvJS1zVYZNpI7jTTPOdcWlWDK3XOuN1eXa0KA0oaLsSUXI3eVezWA6a-WvpkMQTTYjekiheyZFLmW_B6BG3sUorYVKvolyb-VAyq3UQV19U40Za93EtNsiY00bTWp78HoTiTYqe8GDGPiP_t6PgFFAhszQ</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Sivaprakasam, S.</creator><creator>Shanmugan, K.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19950201</creationdate><title>An equivalent Markov model for burst errors in digital channels</title><author>Sivaprakasam, S. ; Shanmugan, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>State estimation</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivaprakasam, S.</creatorcontrib><creatorcontrib>Shanmugan, K.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sivaprakasam, S.</au><au>Shanmugan, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equivalent Markov model for burst errors in digital channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>1995-02-01</date><risdate>1995</risdate><volume>43</volume><issue>2/3/4</issue><spage>1347</spage><epage>1355</epage><pages>1347-1355</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/26.380185</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 1995-02, Vol.43 (2/3/4), p.1347-1355
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_380185
source IEEE Xplore
subjects Applied sciences
Exact sciences and technology
Hidden Markov models
State estimation
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
title An equivalent Markov model for burst errors in digital channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equivalent%20Markov%20model%20for%20burst%20errors%20in%20digital%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Sivaprakasam,%20S.&rft.date=1995-02-01&rft.volume=43&rft.issue=2/3/4&rft.spage=1347&rft.epage=1355&rft.pages=1347-1355&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.380185&rft_dat=%3Cproquest_RIE%3E28491447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28491447&rft_id=info:pmid/&rft_ieee_id=380185&rfr_iscdi=true