An equivalent Markov model for burst errors in digital channels
A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 1995-02, Vol.43 (2/3/4), p.1347-1355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1355 |
---|---|
container_issue | 2/3/4 |
container_start_page | 1347 |
container_title | IEEE transactions on communications |
container_volume | 43 |
creator | Sivaprakasam, S. Shanmugan, K.S. |
description | A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.< > |
doi_str_mv | 10.1109/26.380185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_380185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>380185</ieee_id><sourcerecordid>28491447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhS0EEqUwsDJ5QEgMKdfPJBNCFS-piAXmyLFvwOAmrZ1U4t_TKhVMR7rnu99wCDlnMGMMyhuuZ6IAVqgDMmFKFRkUKj8kE4ASMp3nxTE5SekLACQIMSG3dy3F9eA3JmDb0xcTv7sNXXYOA226SOshpp5ijF1M1LfU-Q_fm0Dtp2lbDOmUHDUmJDzb55S8P9y_zZ-yxevj8_xukVkBus-04AK1KRvnXG0bVvJS1zVYZNpI7jTTPOdcWlWDK3XOuN1eXa0KA0oaLsSUXI3eVezWA6a-WvpkMQTTYjekiheyZFLmW_B6BG3sUorYVKvolyb-VAyq3UQV19U40Za93EtNsiY00bTWp78HoTiTYqe8GDGPiP_t6PgFFAhszQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28491447</pqid></control><display><type>article</type><title>An equivalent Markov model for burst errors in digital channels</title><source>IEEE Xplore</source><creator>Sivaprakasam, S. ; Shanmugan, K.S.</creator><creatorcontrib>Sivaprakasam, S. ; Shanmugan, K.S.</creatorcontrib><description>A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.< ></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.380185</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Exact sciences and technology ; Hidden Markov models ; State estimation ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on communications, 1995-02, Vol.43 (2/3/4), p.1347-1355</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</citedby><cites>FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/380185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/380185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3521437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sivaprakasam, S.</creatorcontrib><creatorcontrib>Shanmugan, K.S.</creatorcontrib><title>An equivalent Markov model for burst errors in digital channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.< ></description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>State estimation</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkDtPwzAUhS0EEqUwsDJ5QEgMKdfPJBNCFS-piAXmyLFvwOAmrZ1U4t_TKhVMR7rnu99wCDlnMGMMyhuuZ6IAVqgDMmFKFRkUKj8kE4ASMp3nxTE5SekLACQIMSG3dy3F9eA3JmDb0xcTv7sNXXYOA226SOshpp5ijF1M1LfU-Q_fm0Dtp2lbDOmUHDUmJDzb55S8P9y_zZ-yxevj8_xukVkBus-04AK1KRvnXG0bVvJS1zVYZNpI7jTTPOdcWlWDK3XOuN1eXa0KA0oaLsSUXI3eVezWA6a-WvpkMQTTYjekiheyZFLmW_B6BG3sUorYVKvolyb-VAyq3UQV19U40Za93EtNsiY00bTWp78HoTiTYqe8GDGPiP_t6PgFFAhszQ</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Sivaprakasam, S.</creator><creator>Shanmugan, K.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19950201</creationdate><title>An equivalent Markov model for burst errors in digital channels</title><author>Sivaprakasam, S. ; Shanmugan, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6323e6a9fdddbcf19296bb0ce16a42d61627224c5b0d96712c42ddb58a054a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>State estimation</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivaprakasam, S.</creatorcontrib><creatorcontrib>Shanmugan, K.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sivaprakasam, S.</au><au>Shanmugan, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equivalent Markov model for burst errors in digital channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>1995-02-01</date><risdate>1995</risdate><volume>43</volume><issue>2/3/4</issue><spage>1347</spage><epage>1355</epage><pages>1347-1355</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>A hidden Markov model for burst errors is specified by a probability transition matrix P, an initial probability vector p, and the state dependent probability of error matrix B. Several procedures are available for estimating P, p and B from a given error (observation) sequence. However, even with some restrictions on the structure of the underlying Markov models, the estimation procedures are computationally intensive particularly when the observation sequence contains long strings of identical symbols. We show that, under some mild assumptions, a Markov model with an arbitrary transition matrix P is equivalent to a Markov model with a unique "block diagonal" transition matrix /spl Lambda/. We also present a computationally very efficient algorithm for estimating /spl Lambda/ from a set of observation using a modified Baum-Welch (1972) algorithm.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/26.380185</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 1995-02, Vol.43 (2/3/4), p.1347-1355 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_380185 |
source | IEEE Xplore |
subjects | Applied sciences Exact sciences and technology Hidden Markov models State estimation Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) |
title | An equivalent Markov model for burst errors in digital channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equivalent%20Markov%20model%20for%20burst%20errors%20in%20digital%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Sivaprakasam,%20S.&rft.date=1995-02-01&rft.volume=43&rft.issue=2/3/4&rft.spage=1347&rft.epage=1355&rft.pages=1347-1355&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.380185&rft_dat=%3Cproquest_RIE%3E28491447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28491447&rft_id=info:pmid/&rft_ieee_id=380185&rfr_iscdi=true |