Schemes of dynamic redundancy for fault tolerance in random access memories

For large memory capacities, stand-by systems usually need a considerable amount of redundant hardware, not only because of the spare components, but for storing fault conditions and for carrying out the necessary reconfiguration. As alternatives, two methods of implementing fault tolerance by means...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 1988-08, Vol.37 (3), p.331-339
1. Verfasser: Grosspietsch, K.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 3
container_start_page 331
container_title IEEE transactions on reliability
container_volume 37
creator Grosspietsch, K.E.
description For large memory capacities, stand-by systems usually need a considerable amount of redundant hardware, not only because of the spare components, but for storing fault conditions and for carrying out the necessary reconfiguration. As alternatives, two methods of implementing fault tolerance by means of dynamic redundancy in random-access memories are proposed which allow the treatment of memory-chip faults at the interface of the memory. The memory reliability for both approaches is estimated by a simple model. These methods improve the reliability considerably compared to conventional memory fault tolerance methods, and the size of the units of reconfiguration can be tailored to the demands of the system user.< >
doi_str_mv 10.1109/24.3764
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_3764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>3764</ieee_id><sourcerecordid>28582382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-362091316442a3c2db3ea9bd10fb9299951b4bd82e88f2b60c1542e81992ed843</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt49ZiD6GlrJptsk6OIX1jwoJ6XbDLBlf2oye6h_71ZW3othMm85Meb4RFyCWwBwPQdF4t8WYgjMgMpVQZLDsdkxhioTEuuT8lZjD9JCqHVjLx92G9sMdLeU7fpTFtbGtCNnTOd3VDfB-rN2Ax06BsM6Q1p3dHUuL6lxlqMkbbY9qHGeE5OvGkiXuzuOfl6evx8eMlW78-vD_erzOYFH7JUmIYcCiG4yS13VY5GVw6YrzTXWkuoROUUR6U8rwpmQYokQGuOTol8Tm62vuvQ_44Yh7Kto8WmMR32Yyy5lopJrg6DSiqep3MQlCkwSEvPye0WtKGPMaAv16FuTdiUwMop_pKLcoo_kdc7SxOtafyUXR33-JIVWsM0-WqL1Yi4__13-AM4sYo3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25001191</pqid></control><display><type>article</type><title>Schemes of dynamic redundancy for fault tolerance in random access memories</title><source>IEEE Electronic Library (IEL)</source><creator>Grosspietsch, K.E.</creator><creatorcontrib>Grosspietsch, K.E.</creatorcontrib><description>For large memory capacities, stand-by systems usually need a considerable amount of redundant hardware, not only because of the spare components, but for storing fault conditions and for carrying out the necessary reconfiguration. As alternatives, two methods of implementing fault tolerance by means of dynamic redundancy in random-access memories are proposed which allow the treatment of memory-chip faults at the interface of the memory. The memory reliability for both approaches is estimated by a simple model. These methods improve the reliability considerably compared to conventional memory fault tolerance methods, and the size of the units of reconfiguration can be tailored to the demands of the system user.&lt; &gt;</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/24.3764</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit faults ; Degradation ; Electronics ; Error correction codes ; Exact sciences and technology ; Fault tolerance ; Fault tolerant systems ; Hardware ; Random access memory ; Redundancy ; Reliability ; Reliability engineering ; Very large scale integration</subject><ispartof>IEEE transactions on reliability, 1988-08, Vol.37 (3), p.331-339</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-362091316442a3c2db3ea9bd10fb9299951b4bd82e88f2b60c1542e81992ed843</citedby><cites>FETCH-LOGICAL-c362t-362091316442a3c2db3ea9bd10fb9299951b4bd82e88f2b60c1542e81992ed843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/3764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/3764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7069912$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grosspietsch, K.E.</creatorcontrib><title>Schemes of dynamic redundancy for fault tolerance in random access memories</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>For large memory capacities, stand-by systems usually need a considerable amount of redundant hardware, not only because of the spare components, but for storing fault conditions and for carrying out the necessary reconfiguration. As alternatives, two methods of implementing fault tolerance by means of dynamic redundancy in random-access memories are proposed which allow the treatment of memory-chip faults at the interface of the memory. The memory reliability for both approaches is estimated by a simple model. These methods improve the reliability considerably compared to conventional memory fault tolerance methods, and the size of the units of reconfiguration can be tailored to the demands of the system user.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuit faults</subject><subject>Degradation</subject><subject>Electronics</subject><subject>Error correction codes</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Hardware</subject><subject>Random access memory</subject><subject>Redundancy</subject><subject>Reliability</subject><subject>Reliability engineering</subject><subject>Very large scale integration</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt49ZiD6GlrJptsk6OIX1jwoJ6XbDLBlf2oye6h_71ZW3othMm85Meb4RFyCWwBwPQdF4t8WYgjMgMpVQZLDsdkxhioTEuuT8lZjD9JCqHVjLx92G9sMdLeU7fpTFtbGtCNnTOd3VDfB-rN2Ax06BsM6Q1p3dHUuL6lxlqMkbbY9qHGeE5OvGkiXuzuOfl6evx8eMlW78-vD_erzOYFH7JUmIYcCiG4yS13VY5GVw6YrzTXWkuoROUUR6U8rwpmQYokQGuOTol8Tm62vuvQ_44Yh7Kto8WmMR32Yyy5lopJrg6DSiqep3MQlCkwSEvPye0WtKGPMaAv16FuTdiUwMop_pKLcoo_kdc7SxOtafyUXR33-JIVWsM0-WqL1Yi4__13-AM4sYo3</recordid><startdate>19880801</startdate><enddate>19880801</enddate><creator>Grosspietsch, K.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19880801</creationdate><title>Schemes of dynamic redundancy for fault tolerance in random access memories</title><author>Grosspietsch, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-362091316442a3c2db3ea9bd10fb9299951b4bd82e88f2b60c1542e81992ed843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Circuit faults</topic><topic>Degradation</topic><topic>Electronics</topic><topic>Error correction codes</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Hardware</topic><topic>Random access memory</topic><topic>Redundancy</topic><topic>Reliability</topic><topic>Reliability engineering</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosspietsch, K.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grosspietsch, K.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schemes of dynamic redundancy for fault tolerance in random access memories</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1988-08-01</date><risdate>1988</risdate><volume>37</volume><issue>3</issue><spage>331</spage><epage>339</epage><pages>331-339</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>For large memory capacities, stand-by systems usually need a considerable amount of redundant hardware, not only because of the spare components, but for storing fault conditions and for carrying out the necessary reconfiguration. As alternatives, two methods of implementing fault tolerance by means of dynamic redundancy in random-access memories are proposed which allow the treatment of memory-chip faults at the interface of the memory. The memory reliability for both approaches is estimated by a simple model. These methods improve the reliability considerably compared to conventional memory fault tolerance methods, and the size of the units of reconfiguration can be tailored to the demands of the system user.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/24.3764</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 1988-08, Vol.37 (3), p.331-339
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_3764
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit faults
Degradation
Electronics
Error correction codes
Exact sciences and technology
Fault tolerance
Fault tolerant systems
Hardware
Random access memory
Redundancy
Reliability
Reliability engineering
Very large scale integration
title Schemes of dynamic redundancy for fault tolerance in random access memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schemes%20of%20dynamic%20redundancy%20for%20fault%20tolerance%20in%20random%20access%20memories&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Grosspietsch,%20K.E.&rft.date=1988-08-01&rft.volume=37&rft.issue=3&rft.spage=331&rft.epage=339&rft.pages=331-339&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/24.3764&rft_dat=%3Cproquest_RIE%3E28582382%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25001191&rft_id=info:pmid/&rft_ieee_id=3764&rfr_iscdi=true