Temporal sequence processing based on the biological reaction-diffusion process
Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitativ...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2320 vol.4 |
---|---|
container_issue | |
container_start_page | 2315 |
container_title | |
container_volume | 4 |
creator | Kargupta, H. Ray, S.R. |
description | Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.< > |
doi_str_mv | 10.1109/ICNN.1994.374580 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_374580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>374580</ieee_id><sourcerecordid>374580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-f17379f903e35cb673ff4343ad95e9b3cf0ab98cf2490fa45470a9e3f40a8aeb3</originalsourceid><addsrcrecordid>eNo1j81OwzAQhC0hJKD0jjj5BVLWrIOzRxTxU6lqL0XiVtnOuhilcYjTA29PpJa5zBy-GWmEuFOwUAroYVmv1wtFpBdodFnBhbgBUwEqAvV5JeY5f8MkXSpAcy02Wz70abCtzPxz5M6z7IfkOefY7aWzmRuZOjl-sXQxtWkf_cQObP0YU1c0MYRjntJ_61ZcBttmnp99Jj5eX7b1e7HavC3r51URFeixCMqgoUCAjKV3TwZD0KjRNlQyOfQBrKPKh0dNEKwutQFLjEGDrSw7nIn7025k5l0_xIMdfneny_gHLwVODw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Temporal sequence processing based on the biological reaction-diffusion process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kargupta, H. ; Ray, S.R.</creator><creatorcontrib>Kargupta, H. ; Ray, S.R.</creatorcontrib><description>Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.< ></description><identifier>ISBN: 078031901X</identifier><identifier>ISBN: 9780780319011</identifier><identifier>DOI: 10.1109/ICNN.1994.374580</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological control systems ; Biological system modeling ; Communication system control ; Computer science ; Multi-layer neural network ; Music information retrieval ; Process control ; Signal processing ; Spatiotemporal phenomena ; Systems engineering and theory</subject><ispartof>Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), 1994, Vol.4, p.2315-2320 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/374580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/374580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kargupta, H.</creatorcontrib><creatorcontrib>Ray, S.R.</creatorcontrib><title>Temporal sequence processing based on the biological reaction-diffusion process</title><title>Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)</title><addtitle>ICNN</addtitle><description>Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.< ></description><subject>Biological control systems</subject><subject>Biological system modeling</subject><subject>Communication system control</subject><subject>Computer science</subject><subject>Multi-layer neural network</subject><subject>Music information retrieval</subject><subject>Process control</subject><subject>Signal processing</subject><subject>Spatiotemporal phenomena</subject><subject>Systems engineering and theory</subject><isbn>078031901X</isbn><isbn>9780780319011</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81OwzAQhC0hJKD0jjj5BVLWrIOzRxTxU6lqL0XiVtnOuhilcYjTA29PpJa5zBy-GWmEuFOwUAroYVmv1wtFpBdodFnBhbgBUwEqAvV5JeY5f8MkXSpAcy02Wz70abCtzPxz5M6z7IfkOefY7aWzmRuZOjl-sXQxtWkf_cQObP0YU1c0MYRjntJ_61ZcBttmnp99Jj5eX7b1e7HavC3r51URFeixCMqgoUCAjKV3TwZD0KjRNlQyOfQBrKPKh0dNEKwutQFLjEGDrSw7nIn7025k5l0_xIMdfneny_gHLwVODw</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Kargupta, H.</creator><creator>Ray, S.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Temporal sequence processing based on the biological reaction-diffusion process</title><author>Kargupta, H. ; Ray, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-f17379f903e35cb673ff4343ad95e9b3cf0ab98cf2490fa45470a9e3f40a8aeb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Biological control systems</topic><topic>Biological system modeling</topic><topic>Communication system control</topic><topic>Computer science</topic><topic>Multi-layer neural network</topic><topic>Music information retrieval</topic><topic>Process control</topic><topic>Signal processing</topic><topic>Spatiotemporal phenomena</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Kargupta, H.</creatorcontrib><creatorcontrib>Ray, S.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kargupta, H.</au><au>Ray, S.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Temporal sequence processing based on the biological reaction-diffusion process</atitle><btitle>Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)</btitle><stitle>ICNN</stitle><date>1994</date><risdate>1994</risdate><volume>4</volume><spage>2315</spage><epage>2320 vol.4</epage><pages>2315-2320 vol.4</pages><isbn>078031901X</isbn><isbn>9780780319011</isbn><abstract>Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.< ></abstract><pub>IEEE</pub><doi>10.1109/ICNN.1994.374580</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 078031901X |
ispartof | Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), 1994, Vol.4, p.2315-2320 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_374580 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological control systems Biological system modeling Communication system control Computer science Multi-layer neural network Music information retrieval Process control Signal processing Spatiotemporal phenomena Systems engineering and theory |
title | Temporal sequence processing based on the biological reaction-diffusion process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Temporal%20sequence%20processing%20based%20on%20the%20biological%20reaction-diffusion%20process&rft.btitle=Proceedings%20of%201994%20IEEE%20International%20Conference%20on%20Neural%20Networks%20(ICNN'94)&rft.au=Kargupta,%20H.&rft.date=1994&rft.volume=4&rft.spage=2315&rft.epage=2320%20vol.4&rft.pages=2315-2320%20vol.4&rft.isbn=078031901X&rft.isbn_list=9780780319011&rft_id=info:doi/10.1109/ICNN.1994.374580&rft_dat=%3Cieee_6IE%3E374580%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=374580&rfr_iscdi=true |