Temporal sequence processing based on the biological reaction-diffusion process

Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kargupta, H., Ray, S.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2320 vol.4
container_issue
container_start_page 2315
container_title
container_volume 4
creator Kargupta, H.
Ray, S.R.
description Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.< >
doi_str_mv 10.1109/ICNN.1994.374580
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_374580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>374580</ieee_id><sourcerecordid>374580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-f17379f903e35cb673ff4343ad95e9b3cf0ab98cf2490fa45470a9e3f40a8aeb3</originalsourceid><addsrcrecordid>eNo1j81OwzAQhC0hJKD0jjj5BVLWrIOzRxTxU6lqL0XiVtnOuhilcYjTA29PpJa5zBy-GWmEuFOwUAroYVmv1wtFpBdodFnBhbgBUwEqAvV5JeY5f8MkXSpAcy02Wz70abCtzPxz5M6z7IfkOefY7aWzmRuZOjl-sXQxtWkf_cQObP0YU1c0MYRjntJ_61ZcBttmnp99Jj5eX7b1e7HavC3r51URFeixCMqgoUCAjKV3TwZD0KjRNlQyOfQBrKPKh0dNEKwutQFLjEGDrSw7nIn7025k5l0_xIMdfneny_gHLwVODw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Temporal sequence processing based on the biological reaction-diffusion process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kargupta, H. ; Ray, S.R.</creator><creatorcontrib>Kargupta, H. ; Ray, S.R.</creatorcontrib><description>Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.&lt; &gt;</description><identifier>ISBN: 078031901X</identifier><identifier>ISBN: 9780780319011</identifier><identifier>DOI: 10.1109/ICNN.1994.374580</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological control systems ; Biological system modeling ; Communication system control ; Computer science ; Multi-layer neural network ; Music information retrieval ; Process control ; Signal processing ; Spatiotemporal phenomena ; Systems engineering and theory</subject><ispartof>Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), 1994, Vol.4, p.2315-2320 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/374580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/374580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kargupta, H.</creatorcontrib><creatorcontrib>Ray, S.R.</creatorcontrib><title>Temporal sequence processing based on the biological reaction-diffusion process</title><title>Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)</title><addtitle>ICNN</addtitle><description>Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.&lt; &gt;</description><subject>Biological control systems</subject><subject>Biological system modeling</subject><subject>Communication system control</subject><subject>Computer science</subject><subject>Multi-layer neural network</subject><subject>Music information retrieval</subject><subject>Process control</subject><subject>Signal processing</subject><subject>Spatiotemporal phenomena</subject><subject>Systems engineering and theory</subject><isbn>078031901X</isbn><isbn>9780780319011</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81OwzAQhC0hJKD0jjj5BVLWrIOzRxTxU6lqL0XiVtnOuhilcYjTA29PpJa5zBy-GWmEuFOwUAroYVmv1wtFpBdodFnBhbgBUwEqAvV5JeY5f8MkXSpAcy02Wz70abCtzPxz5M6z7IfkOefY7aWzmRuZOjl-sXQxtWkf_cQObP0YU1c0MYRjntJ_61ZcBttmnp99Jj5eX7b1e7HavC3r51URFeixCMqgoUCAjKV3TwZD0KjRNlQyOfQBrKPKh0dNEKwutQFLjEGDrSw7nIn7025k5l0_xIMdfneny_gHLwVODw</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Kargupta, H.</creator><creator>Ray, S.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Temporal sequence processing based on the biological reaction-diffusion process</title><author>Kargupta, H. ; Ray, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-f17379f903e35cb673ff4343ad95e9b3cf0ab98cf2490fa45470a9e3f40a8aeb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Biological control systems</topic><topic>Biological system modeling</topic><topic>Communication system control</topic><topic>Computer science</topic><topic>Multi-layer neural network</topic><topic>Music information retrieval</topic><topic>Process control</topic><topic>Signal processing</topic><topic>Spatiotemporal phenomena</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Kargupta, H.</creatorcontrib><creatorcontrib>Ray, S.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kargupta, H.</au><au>Ray, S.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Temporal sequence processing based on the biological reaction-diffusion process</atitle><btitle>Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)</btitle><stitle>ICNN</stitle><date>1994</date><risdate>1994</risdate><volume>4</volume><spage>2315</spage><epage>2320 vol.4</epage><pages>2315-2320 vol.4</pages><isbn>078031901X</isbn><isbn>9780780319011</isbn><abstract>Temporal (spatiotemporal) sequences are a fundamental form of information and communication both in natural and engineered systems. The biological control process which directs the generation of iterative structures from undifferentiated tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-diffusion, initially proposed by Taring in 1952 and later widely studied and elaborated. We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a chemical "neuron" model, which performs storage, associative retrieval and prediction for temporal sequences. Experiments demonstrate the ability of the device to achieve any desired depth to resolution ratio, limited only by storage capacity, to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to arbitrary accuracy and permit retrieval with controllable redundancy.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1994.374580</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 078031901X
ispartof Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), 1994, Vol.4, p.2315-2320 vol.4
issn
language eng
recordid cdi_ieee_primary_374580
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological control systems
Biological system modeling
Communication system control
Computer science
Multi-layer neural network
Music information retrieval
Process control
Signal processing
Spatiotemporal phenomena
Systems engineering and theory
title Temporal sequence processing based on the biological reaction-diffusion process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Temporal%20sequence%20processing%20based%20on%20the%20biological%20reaction-diffusion%20process&rft.btitle=Proceedings%20of%201994%20IEEE%20International%20Conference%20on%20Neural%20Networks%20(ICNN'94)&rft.au=Kargupta,%20H.&rft.date=1994&rft.volume=4&rft.spage=2315&rft.epage=2320%20vol.4&rft.pages=2315-2320%20vol.4&rft.isbn=078031901X&rft.isbn_list=9780780319011&rft_id=info:doi/10.1109/ICNN.1994.374580&rft_dat=%3Cieee_6IE%3E374580%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=374580&rfr_iscdi=true