Time discretization of continuous-time filters for hidden Markov model parameter estimation

The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: James, M.R., Krishnamurthy, V., Le Gland, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3310 vol.4
container_issue
container_start_page 3305
container_title
container_volume
creator James, M.R.
Krishnamurthy, V.
Le Gland, F.
description The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.< >
doi_str_mv 10.1109/CDC.1992.371026
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_371026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>371026</ieee_id><sourcerecordid>371026</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-ae0a1105cbdf2f21074d632f31768b64af4a43a9901cc6192e1d9e8a9bf4e58e3</originalsourceid><addsrcrecordid>eNotkE9LxDAQxQMiKGvPgqd8gdZMkrbJUeq_hRUv68nDkjYTjLbNkmQF_fRW12FgLr957_EIuQRWATB93d12FWjNK9EC480JKXSr2LKCqZbXZ6RI6Z0tI2sQtTonr1s_IbU-DRGz_zbZh5kGR4cwZz8fwiGV-ZdwfswYE3Uh0jdvLc70ycSP8EmnYHGkexPNhAtCMS0PfzoX5NSZMWHxf1fk5f5u2z2Wm-eHdXezKT0wmUuDzCzh66G3jjsOrJW2EdwJaBvVN9I4aaQwWjMYhgY0R7AaldG9k1grFCtyddT1iLjbx8U-fu2ODYgf1pBSjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time discretization of continuous-time filters for hidden Markov model parameter estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>James, M.R. ; Krishnamurthy, V. ; Le Gland, F.</creator><creatorcontrib>James, M.R. ; Krishnamurthy, V. ; Le Gland, F.</creatorcontrib><description>The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.&lt; &gt;</description><identifier>ISBN: 9780780308725</identifier><identifier>ISBN: 0780308727</identifier><identifier>DOI: 10.1109/CDC.1992.371026</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Equations ; Filters ; Gaussian noise ; Hidden Markov models ; Maximum likelihood estimation ; Noise robustness ; Parameter estimation</subject><ispartof>[1992] Proceedings of the 31st IEEE Conference on Decision and Control, 1992, p.3305-3310 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/371026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/371026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>James, M.R.</creatorcontrib><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Le Gland, F.</creatorcontrib><title>Time discretization of continuous-time filters for hidden Markov model parameter estimation</title><title>[1992] Proceedings of the 31st IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.&lt; &gt;</description><subject>Computational complexity</subject><subject>Equations</subject><subject>Filters</subject><subject>Gaussian noise</subject><subject>Hidden Markov models</subject><subject>Maximum likelihood estimation</subject><subject>Noise robustness</subject><subject>Parameter estimation</subject><isbn>9780780308725</isbn><isbn>0780308727</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE9LxDAQxQMiKGvPgqd8gdZMkrbJUeq_hRUv68nDkjYTjLbNkmQF_fRW12FgLr957_EIuQRWATB93d12FWjNK9EC480JKXSr2LKCqZbXZ6RI6Z0tI2sQtTonr1s_IbU-DRGz_zbZh5kGR4cwZz8fwiGV-ZdwfswYE3Uh0jdvLc70ycSP8EmnYHGkexPNhAtCMS0PfzoX5NSZMWHxf1fk5f5u2z2Wm-eHdXezKT0wmUuDzCzh66G3jjsOrJW2EdwJaBvVN9I4aaQwWjMYhgY0R7AaldG9k1grFCtyddT1iLjbx8U-fu2ODYgf1pBSjw</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>James, M.R.</creator><creator>Krishnamurthy, V.</creator><creator>Le Gland, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>Time discretization of continuous-time filters for hidden Markov model parameter estimation</title><author>James, M.R. ; Krishnamurthy, V. ; Le Gland, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-ae0a1105cbdf2f21074d632f31768b64af4a43a9901cc6192e1d9e8a9bf4e58e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Computational complexity</topic><topic>Equations</topic><topic>Filters</topic><topic>Gaussian noise</topic><topic>Hidden Markov models</topic><topic>Maximum likelihood estimation</topic><topic>Noise robustness</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>James, M.R.</creatorcontrib><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Le Gland, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>James, M.R.</au><au>Krishnamurthy, V.</au><au>Le Gland, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time discretization of continuous-time filters for hidden Markov model parameter estimation</atitle><btitle>[1992] Proceedings of the 31st IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1992</date><risdate>1992</risdate><spage>3305</spage><epage>3310 vol.4</epage><pages>3305-3310 vol.4</pages><isbn>9780780308725</isbn><isbn>0780308727</isbn><abstract>The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/CDC.1992.371026</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780308725
ispartof [1992] Proceedings of the 31st IEEE Conference on Decision and Control, 1992, p.3305-3310 vol.4
issn
language eng
recordid cdi_ieee_primary_371026
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational complexity
Equations
Filters
Gaussian noise
Hidden Markov models
Maximum likelihood estimation
Noise robustness
Parameter estimation
title Time discretization of continuous-time filters for hidden Markov model parameter estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20discretization%20of%20continuous-time%20filters%20for%20hidden%20Markov%20model%20parameter%20estimation&rft.btitle=%5B1992%5D%20Proceedings%20of%20the%2031st%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=James,%20M.R.&rft.date=1992&rft.spage=3305&rft.epage=3310%20vol.4&rft.pages=3305-3310%20vol.4&rft.isbn=9780780308725&rft.isbn_list=0780308727&rft_id=info:doi/10.1109/CDC.1992.371026&rft_dat=%3Cieee_6IE%3E371026%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=371026&rfr_iscdi=true