Time discretization of continuous-time filters for hidden Markov model parameter estimation
The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3310 vol.4 |
---|---|
container_issue | |
container_start_page | 3305 |
container_title | |
container_volume | |
creator | James, M.R. Krishnamurthy, V. Le Gland, F. |
description | The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.< > |
doi_str_mv | 10.1109/CDC.1992.371026 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_371026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>371026</ieee_id><sourcerecordid>371026</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-ae0a1105cbdf2f21074d632f31768b64af4a43a9901cc6192e1d9e8a9bf4e58e3</originalsourceid><addsrcrecordid>eNotkE9LxDAQxQMiKGvPgqd8gdZMkrbJUeq_hRUv68nDkjYTjLbNkmQF_fRW12FgLr957_EIuQRWATB93d12FWjNK9EC480JKXSr2LKCqZbXZ6RI6Z0tI2sQtTonr1s_IbU-DRGz_zbZh5kGR4cwZz8fwiGV-ZdwfswYE3Uh0jdvLc70ycSP8EmnYHGkexPNhAtCMS0PfzoX5NSZMWHxf1fk5f5u2z2Wm-eHdXezKT0wmUuDzCzh66G3jjsOrJW2EdwJaBvVN9I4aaQwWjMYhgY0R7AaldG9k1grFCtyddT1iLjbx8U-fu2ODYgf1pBSjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time discretization of continuous-time filters for hidden Markov model parameter estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>James, M.R. ; Krishnamurthy, V. ; Le Gland, F.</creator><creatorcontrib>James, M.R. ; Krishnamurthy, V. ; Le Gland, F.</creatorcontrib><description>The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.< ></description><identifier>ISBN: 9780780308725</identifier><identifier>ISBN: 0780308727</identifier><identifier>DOI: 10.1109/CDC.1992.371026</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Equations ; Filters ; Gaussian noise ; Hidden Markov models ; Maximum likelihood estimation ; Noise robustness ; Parameter estimation</subject><ispartof>[1992] Proceedings of the 31st IEEE Conference on Decision and Control, 1992, p.3305-3310 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/371026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/371026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>James, M.R.</creatorcontrib><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Le Gland, F.</creatorcontrib><title>Time discretization of continuous-time filters for hidden Markov model parameter estimation</title><title>[1992] Proceedings of the 31st IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.< ></description><subject>Computational complexity</subject><subject>Equations</subject><subject>Filters</subject><subject>Gaussian noise</subject><subject>Hidden Markov models</subject><subject>Maximum likelihood estimation</subject><subject>Noise robustness</subject><subject>Parameter estimation</subject><isbn>9780780308725</isbn><isbn>0780308727</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE9LxDAQxQMiKGvPgqd8gdZMkrbJUeq_hRUv68nDkjYTjLbNkmQF_fRW12FgLr957_EIuQRWATB93d12FWjNK9EC480JKXSr2LKCqZbXZ6RI6Z0tI2sQtTonr1s_IbU-DRGz_zbZh5kGR4cwZz8fwiGV-ZdwfswYE3Uh0jdvLc70ycSP8EmnYHGkexPNhAtCMS0PfzoX5NSZMWHxf1fk5f5u2z2Wm-eHdXezKT0wmUuDzCzh66G3jjsOrJW2EdwJaBvVN9I4aaQwWjMYhgY0R7AaldG9k1grFCtyddT1iLjbx8U-fu2ODYgf1pBSjw</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>James, M.R.</creator><creator>Krishnamurthy, V.</creator><creator>Le Gland, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>Time discretization of continuous-time filters for hidden Markov model parameter estimation</title><author>James, M.R. ; Krishnamurthy, V. ; Le Gland, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-ae0a1105cbdf2f21074d632f31768b64af4a43a9901cc6192e1d9e8a9bf4e58e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Computational complexity</topic><topic>Equations</topic><topic>Filters</topic><topic>Gaussian noise</topic><topic>Hidden Markov models</topic><topic>Maximum likelihood estimation</topic><topic>Noise robustness</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>James, M.R.</creatorcontrib><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Le Gland, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>James, M.R.</au><au>Krishnamurthy, V.</au><au>Le Gland, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time discretization of continuous-time filters for hidden Markov model parameter estimation</atitle><btitle>[1992] Proceedings of the 31st IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1992</date><risdate>1992</risdate><spage>3305</spage><epage>3310 vol.4</epage><pages>3305-3310 vol.4</pages><isbn>9780780308725</isbn><isbn>0780308727</isbn><abstract>The authors propose numerical techniques for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Continuous-time filters that estimate the quantities used in the expectation-maximization (EM) algorithm for maximum likelihood parameter estimation have been obtained by R.J. Elliott (1991, 1992). The numerical work is based on the robust discretization of these filters. The advantage of using filters in the EM algorithm is that they have negligible memory requirements, independent of the number of observations. In comparison, standard discrete-time EM algorithms (Baum-Welch re-estimation equations) are based on smoothers and require the use of the forward-backward algorithm, which is a fixed-interval algorithm and has memory requirements proportional to the number of observations. Although the computational complexity of the filters at each time instant is O(N/sup 4/) (for a N state Markov) compared to O(N/sup 2/) for the forward-backward scheme, the filters are suitable for parallel implementation. Simulations are presented to illustrate the satisfactory performance of the algorithms.< ></abstract><pub>IEEE</pub><doi>10.1109/CDC.1992.371026</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780308725 |
ispartof | [1992] Proceedings of the 31st IEEE Conference on Decision and Control, 1992, p.3305-3310 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_371026 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational complexity Equations Filters Gaussian noise Hidden Markov models Maximum likelihood estimation Noise robustness Parameter estimation |
title | Time discretization of continuous-time filters for hidden Markov model parameter estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20discretization%20of%20continuous-time%20filters%20for%20hidden%20Markov%20model%20parameter%20estimation&rft.btitle=%5B1992%5D%20Proceedings%20of%20the%2031st%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=James,%20M.R.&rft.date=1992&rft.spage=3305&rft.epage=3310%20vol.4&rft.pages=3305-3310%20vol.4&rft.isbn=9780780308725&rft.isbn_list=0780308727&rft_id=info:doi/10.1109/CDC.1992.371026&rft_dat=%3Cieee_6IE%3E371026%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=371026&rfr_iscdi=true |