A new approach to genetics based machine learning in fuzzy controller design

This paper proposes an evolutionary approach to fuzzy controller design based on the "Pittsburgh" style classifier system in which whole rule-sets are the unit of credit assignment and selection. We present a description of a system based on this idea, together with experimental results us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carse, B., Fogarty, T.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 231
container_title
container_volume
creator Carse, B.
Fogarty, T.C.
description This paper proposes an evolutionary approach to fuzzy controller design based on the "Pittsburgh" style classifier system in which whole rule-sets are the unit of credit assignment and selection. We present a description of a system based on this idea, together with experimental results using the system to learn function identification. The representation used allows the genetic algorithm to vary both membership functions (centres and widths) and fuzzy relations. We introduce a new crossover operator which employs crosspoints in the input space and demonstrate its efficacy. Finally, we present results which show that the classifier system is capable of self-organisation of membership functions and fuzzy relations simultaneously.< >
doi_str_mv 10.1109/ISIC.1994.367812
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_367812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>367812</ieee_id><sourcerecordid>367812</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-90b372681d86e4a2db4f9edf0e49bc3334791575ef486f090e290584c869fcba3</originalsourceid><addsrcrecordid>eNo9UE1LxDAUDH6Ay9q7eMofaE2aNMk7LsWPQsGDel7S9KVGumlpK7L76y2sOAwMzDwezBByx1nGOYOH6q0qMw4gM6G04fkF2eS8MCkYDZckAW3YSrFesOLqP1PshiTz_MVWyIKB4htS72jEH2rHcRqs-6TLQDuMuAQ308bO2NLDaoeItEc7xRA7GiL136fTkbohLtPQ9zjRFufQxVty7W0_Y_KnW_Lx9PhevqT163NV7uo0cCaXFFgjdK4Mb41CafO2kR6w9QwlNE4IITXwQhfopVGeAcN87WGkMwq8a6zYkvvz34CI-3EKBzsd9-cpxC9Hg0_Z</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new approach to genetics based machine learning in fuzzy controller design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carse, B. ; Fogarty, T.C.</creator><creatorcontrib>Carse, B. ; Fogarty, T.C.</creatorcontrib><description>This paper proposes an evolutionary approach to fuzzy controller design based on the "Pittsburgh" style classifier system in which whole rule-sets are the unit of credit assignment and selection. We present a description of a system based on this idea, together with experimental results using the system to learn function identification. The representation used allows the genetic algorithm to vary both membership functions (centres and widths) and fuzzy relations. We introduce a new crossover operator which employs crosspoints in the input space and demonstrate its efficacy. Finally, we present results which show that the classifier system is capable of self-organisation of membership functions and fuzzy relations simultaneously.&lt; &gt;</description><identifier>ISSN: 2158-9860</identifier><identifier>ISBN: 9780780319905</identifier><identifier>ISBN: 0780319907</identifier><identifier>EISSN: 2158-9879</identifier><identifier>DOI: 10.1109/ISIC.1994.367812</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Environmental economics ; Fuzzy control ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Genetics ; Machine learning ; Motion control ; Temperature control</subject><ispartof>Proceedings of 1994 9th IEEE International Symposium on Intelligent Control, 1994, p.231-236</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/367812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/367812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carse, B.</creatorcontrib><creatorcontrib>Fogarty, T.C.</creatorcontrib><title>A new approach to genetics based machine learning in fuzzy controller design</title><title>Proceedings of 1994 9th IEEE International Symposium on Intelligent Control</title><addtitle>ISIC</addtitle><description>This paper proposes an evolutionary approach to fuzzy controller design based on the "Pittsburgh" style classifier system in which whole rule-sets are the unit of credit assignment and selection. We present a description of a system based on this idea, together with experimental results using the system to learn function identification. The representation used allows the genetic algorithm to vary both membership functions (centres and widths) and fuzzy relations. We introduce a new crossover operator which employs crosspoints in the input space and demonstrate its efficacy. Finally, we present results which show that the classifier system is capable of self-organisation of membership functions and fuzzy relations simultaneously.&lt; &gt;</description><subject>Automatic control</subject><subject>Environmental economics</subject><subject>Fuzzy control</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetics</subject><subject>Machine learning</subject><subject>Motion control</subject><subject>Temperature control</subject><issn>2158-9860</issn><issn>2158-9879</issn><isbn>9780780319905</isbn><isbn>0780319907</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UE1LxDAUDH6Ay9q7eMofaE2aNMk7LsWPQsGDel7S9KVGumlpK7L76y2sOAwMzDwezBByx1nGOYOH6q0qMw4gM6G04fkF2eS8MCkYDZckAW3YSrFesOLqP1PshiTz_MVWyIKB4htS72jEH2rHcRqs-6TLQDuMuAQ308bO2NLDaoeItEc7xRA7GiL136fTkbohLtPQ9zjRFufQxVty7W0_Y_KnW_Lx9PhevqT163NV7uo0cCaXFFgjdK4Mb41CafO2kR6w9QwlNE4IITXwQhfopVGeAcN87WGkMwq8a6zYkvvz34CI-3EKBzsd9-cpxC9Hg0_Z</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Carse, B.</creator><creator>Fogarty, T.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>A new approach to genetics based machine learning in fuzzy controller design</title><author>Carse, B. ; Fogarty, T.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-90b372681d86e4a2db4f9edf0e49bc3334791575ef486f090e290584c869fcba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Automatic control</topic><topic>Environmental economics</topic><topic>Fuzzy control</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetics</topic><topic>Machine learning</topic><topic>Motion control</topic><topic>Temperature control</topic><toplevel>online_resources</toplevel><creatorcontrib>Carse, B.</creatorcontrib><creatorcontrib>Fogarty, T.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carse, B.</au><au>Fogarty, T.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new approach to genetics based machine learning in fuzzy controller design</atitle><btitle>Proceedings of 1994 9th IEEE International Symposium on Intelligent Control</btitle><stitle>ISIC</stitle><date>1994</date><risdate>1994</risdate><spage>231</spage><epage>236</epage><pages>231-236</pages><issn>2158-9860</issn><eissn>2158-9879</eissn><isbn>9780780319905</isbn><isbn>0780319907</isbn><abstract>This paper proposes an evolutionary approach to fuzzy controller design based on the "Pittsburgh" style classifier system in which whole rule-sets are the unit of credit assignment and selection. We present a description of a system based on this idea, together with experimental results using the system to learn function identification. The representation used allows the genetic algorithm to vary both membership functions (centres and widths) and fuzzy relations. We introduce a new crossover operator which employs crosspoints in the input space and demonstrate its efficacy. Finally, we present results which show that the classifier system is capable of self-organisation of membership functions and fuzzy relations simultaneously.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ISIC.1994.367812</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-9860
ispartof Proceedings of 1994 9th IEEE International Symposium on Intelligent Control, 1994, p.231-236
issn 2158-9860
2158-9879
language eng
recordid cdi_ieee_primary_367812
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Environmental economics
Fuzzy control
Fuzzy set theory
Fuzzy sets
Fuzzy systems
Genetics
Machine learning
Motion control
Temperature control
title A new approach to genetics based machine learning in fuzzy controller design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20approach%20to%20genetics%20based%20machine%20learning%20in%20fuzzy%20controller%20design&rft.btitle=Proceedings%20of%201994%209th%20IEEE%20International%20Symposium%20on%20Intelligent%20Control&rft.au=Carse,%20B.&rft.date=1994&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.issn=2158-9860&rft.eissn=2158-9879&rft.isbn=9780780319905&rft.isbn_list=0780319907&rft_id=info:doi/10.1109/ISIC.1994.367812&rft_dat=%3Cieee_6IE%3E367812%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=367812&rfr_iscdi=true