Nonparametric estimation of reliability function using the kernel density estimation method

Analysis of data from an accelerated life test employs a model. Such a statistical model for an accelerated life test consists of a life distribution that represents the scatter in product life and a relationship between life and stress. In this study, the Coffin-Manson relationship is used to model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oh-Gone Chun, Seung-Ho Ahn, Myung-Yung Jeong, Tae-Goo Choy, Kee-Hoon Kang, Byeong-Uk Park, Jae-Joo Kim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue
container_start_page 766
container_title
container_volume
creator Oh-Gone Chun
Seung-Ho Ahn
Myung-Yung Jeong
Tae-Goo Choy
Kee-Hoon Kang
Byeong-Uk Park
Jae-Joo Kim
description Analysis of data from an accelerated life test employs a model. Such a statistical model for an accelerated life test consists of a life distribution that represents the scatter in product life and a relationship between life and stress. In this study, the Coffin-Manson relationship is used to model fatigue failure of metals subject to thermal cycling. Generally there are two statistical methods for estimating reliability of objects (life distribution). One is a parametric approach and the other is a nonparametric one. The parametric method assumes that the underlying distribution function belongs to a fixed distribution family indexed by a finite number of parameters. The unknown parameters are then estimated from the data. On the other hand, the nonparametric method does not specify a particular family of distributions. The major difficulty of the parametric approach arises at the stage of model specification. Correct specification of the underlying model is crucial for successful application of the parametric approach. Incorrect specification yields severe model bias and this cannot be compensated in any degree by accurate parameter estimation. In this paper, we provide a nonparametric method to estimate the life distribution under normal usage from accelerated life test data.< >
doi_str_mv 10.1109/ECTC.1994.367584
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_367584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>367584</ieee_id><sourcerecordid>367584</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-aeee7bee520afe7bff531254ecb94a4589c54521eb10936cd6f6ff92d4cc46b73</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhgMiKHXv4il_YNd87m6OstQPKHqpJw8lyU5sdJstSXrovzfaHhxemGF452FmELqlpKGUqPvlsB4aqpRoeNvJXlygSnU9KeJEUcGuUJXSFykhJGW9uEYfr3PY66h3kKO3GFL2O539HPDscITJa-Mnn4_YHYL96x-SD584bwF_Qwww4RFC-nX8my207TzeoEunpwTVOS_Q--NyPTzXq7enl-FhVXvasVxrAOgMgGREu1I5JzllUoA1Smghe2WlkIyCKSfy1o6ta51TbBTWitZ0fIHuTlxfSJt9LFvE4-b0Af4D06NUNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonparametric estimation of reliability function using the kernel density estimation method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oh-Gone Chun ; Seung-Ho Ahn ; Myung-Yung Jeong ; Tae-Goo Choy ; Kee-Hoon Kang ; Byeong-Uk Park ; Jae-Joo Kim</creator><creatorcontrib>Oh-Gone Chun ; Seung-Ho Ahn ; Myung-Yung Jeong ; Tae-Goo Choy ; Kee-Hoon Kang ; Byeong-Uk Park ; Jae-Joo Kim</creatorcontrib><description>Analysis of data from an accelerated life test employs a model. Such a statistical model for an accelerated life test consists of a life distribution that represents the scatter in product life and a relationship between life and stress. In this study, the Coffin-Manson relationship is used to model fatigue failure of metals subject to thermal cycling. Generally there are two statistical methods for estimating reliability of objects (life distribution). One is a parametric approach and the other is a nonparametric one. The parametric method assumes that the underlying distribution function belongs to a fixed distribution family indexed by a finite number of parameters. The unknown parameters are then estimated from the data. On the other hand, the nonparametric method does not specify a particular family of distributions. The major difficulty of the parametric approach arises at the stage of model specification. Correct specification of the underlying model is crucial for successful application of the parametric approach. Incorrect specification yields severe model bias and this cannot be compensated in any degree by accurate parameter estimation. In this paper, we provide a nonparametric method to estimate the life distribution under normal usage from accelerated life test data.&lt; &gt;</description><identifier>ISBN: 9780780309142</identifier><identifier>ISBN: 0780309146</identifier><identifier>DOI: 10.1109/ECTC.1994.367584</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data analysis ; Distribution functions ; Fatigue ; Kernel ; Life estimation ; Life testing ; Parameter estimation ; Scattering ; Statistical analysis ; Thermal stresses</subject><ispartof>1994 Proceedings. 44th Electronic Components and Technology Conference, 1994, p.766-772</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/367584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/367584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oh-Gone Chun</creatorcontrib><creatorcontrib>Seung-Ho Ahn</creatorcontrib><creatorcontrib>Myung-Yung Jeong</creatorcontrib><creatorcontrib>Tae-Goo Choy</creatorcontrib><creatorcontrib>Kee-Hoon Kang</creatorcontrib><creatorcontrib>Byeong-Uk Park</creatorcontrib><creatorcontrib>Jae-Joo Kim</creatorcontrib><title>Nonparametric estimation of reliability function using the kernel density estimation method</title><title>1994 Proceedings. 44th Electronic Components and Technology Conference</title><addtitle>ECTC</addtitle><description>Analysis of data from an accelerated life test employs a model. Such a statistical model for an accelerated life test consists of a life distribution that represents the scatter in product life and a relationship between life and stress. In this study, the Coffin-Manson relationship is used to model fatigue failure of metals subject to thermal cycling. Generally there are two statistical methods for estimating reliability of objects (life distribution). One is a parametric approach and the other is a nonparametric one. The parametric method assumes that the underlying distribution function belongs to a fixed distribution family indexed by a finite number of parameters. The unknown parameters are then estimated from the data. On the other hand, the nonparametric method does not specify a particular family of distributions. The major difficulty of the parametric approach arises at the stage of model specification. Correct specification of the underlying model is crucial for successful application of the parametric approach. Incorrect specification yields severe model bias and this cannot be compensated in any degree by accurate parameter estimation. In this paper, we provide a nonparametric method to estimate the life distribution under normal usage from accelerated life test data.&lt; &gt;</description><subject>Data analysis</subject><subject>Distribution functions</subject><subject>Fatigue</subject><subject>Kernel</subject><subject>Life estimation</subject><subject>Life testing</subject><subject>Parameter estimation</subject><subject>Scattering</subject><subject>Statistical analysis</subject><subject>Thermal stresses</subject><isbn>9780780309142</isbn><isbn>0780309146</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhgMiKHXv4il_YNd87m6OstQPKHqpJw8lyU5sdJstSXrovzfaHhxemGF452FmELqlpKGUqPvlsB4aqpRoeNvJXlygSnU9KeJEUcGuUJXSFykhJGW9uEYfr3PY66h3kKO3GFL2O539HPDscITJa-Mnn4_YHYL96x-SD584bwF_Qwww4RFC-nX8my207TzeoEunpwTVOS_Q--NyPTzXq7enl-FhVXvasVxrAOgMgGREu1I5JzllUoA1Smghe2WlkIyCKSfy1o6ta51TbBTWitZ0fIHuTlxfSJt9LFvE4-b0Af4D06NUNA</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Oh-Gone Chun</creator><creator>Seung-Ho Ahn</creator><creator>Myung-Yung Jeong</creator><creator>Tae-Goo Choy</creator><creator>Kee-Hoon Kang</creator><creator>Byeong-Uk Park</creator><creator>Jae-Joo Kim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Nonparametric estimation of reliability function using the kernel density estimation method</title><author>Oh-Gone Chun ; Seung-Ho Ahn ; Myung-Yung Jeong ; Tae-Goo Choy ; Kee-Hoon Kang ; Byeong-Uk Park ; Jae-Joo Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-aeee7bee520afe7bff531254ecb94a4589c54521eb10936cd6f6ff92d4cc46b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Data analysis</topic><topic>Distribution functions</topic><topic>Fatigue</topic><topic>Kernel</topic><topic>Life estimation</topic><topic>Life testing</topic><topic>Parameter estimation</topic><topic>Scattering</topic><topic>Statistical analysis</topic><topic>Thermal stresses</topic><toplevel>online_resources</toplevel><creatorcontrib>Oh-Gone Chun</creatorcontrib><creatorcontrib>Seung-Ho Ahn</creatorcontrib><creatorcontrib>Myung-Yung Jeong</creatorcontrib><creatorcontrib>Tae-Goo Choy</creatorcontrib><creatorcontrib>Kee-Hoon Kang</creatorcontrib><creatorcontrib>Byeong-Uk Park</creatorcontrib><creatorcontrib>Jae-Joo Kim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh-Gone Chun</au><au>Seung-Ho Ahn</au><au>Myung-Yung Jeong</au><au>Tae-Goo Choy</au><au>Kee-Hoon Kang</au><au>Byeong-Uk Park</au><au>Jae-Joo Kim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonparametric estimation of reliability function using the kernel density estimation method</atitle><btitle>1994 Proceedings. 44th Electronic Components and Technology Conference</btitle><stitle>ECTC</stitle><date>1994</date><risdate>1994</risdate><spage>766</spage><epage>772</epage><pages>766-772</pages><isbn>9780780309142</isbn><isbn>0780309146</isbn><abstract>Analysis of data from an accelerated life test employs a model. Such a statistical model for an accelerated life test consists of a life distribution that represents the scatter in product life and a relationship between life and stress. In this study, the Coffin-Manson relationship is used to model fatigue failure of metals subject to thermal cycling. Generally there are two statistical methods for estimating reliability of objects (life distribution). One is a parametric approach and the other is a nonparametric one. The parametric method assumes that the underlying distribution function belongs to a fixed distribution family indexed by a finite number of parameters. The unknown parameters are then estimated from the data. On the other hand, the nonparametric method does not specify a particular family of distributions. The major difficulty of the parametric approach arises at the stage of model specification. Correct specification of the underlying model is crucial for successful application of the parametric approach. Incorrect specification yields severe model bias and this cannot be compensated in any degree by accurate parameter estimation. In this paper, we provide a nonparametric method to estimate the life distribution under normal usage from accelerated life test data.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ECTC.1994.367584</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780309142
ispartof 1994 Proceedings. 44th Electronic Components and Technology Conference, 1994, p.766-772
issn
language eng
recordid cdi_ieee_primary_367584
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data analysis
Distribution functions
Fatigue
Kernel
Life estimation
Life testing
Parameter estimation
Scattering
Statistical analysis
Thermal stresses
title Nonparametric estimation of reliability function using the kernel density estimation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonparametric%20estimation%20of%20reliability%20function%20using%20the%20kernel%20density%20estimation%20method&rft.btitle=1994%20Proceedings.%2044th%20Electronic%20Components%20and%20Technology%20Conference&rft.au=Oh-Gone%20Chun&rft.date=1994&rft.spage=766&rft.epage=772&rft.pages=766-772&rft.isbn=9780780309142&rft.isbn_list=0780309146&rft_id=info:doi/10.1109/ECTC.1994.367584&rft_dat=%3Cieee_6IE%3E367584%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=367584&rfr_iscdi=true