A property of the Routh table and its use
Starting from a given polynomial, the Routh algorithm recursively generates a family of all-pole transfer functions with the same energy of the impulse response and a suitable number of its derivatives. It is shown that each of these energies is given by a linear combination of some of the others ac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1994-12, Vol.39 (12), p.2494-2496 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2496 |
---|---|
container_issue | 12 |
container_start_page | 2494 |
container_title | IEEE transactions on automatic control |
container_volume | 39 |
creator | Beghi, A. Lepschy, A. Viaro, U. |
description | Starting from a given polynomial, the Routh algorithm recursively generates a family of all-pole transfer functions with the same energy of the impulse response and a suitable number of its derivatives. It is shown that each of these energies is given by a linear combination of some of the others according to the entries of a row of the Routh table for the given polynomial. This fact can be exploited to evaluate certain quadratic integrals in an efficient way.< > |
doi_str_mv | 10.1109/9.362839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_362839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>362839</ieee_id><sourcerecordid>28527496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e88e6aa51bc9a50d8ebfaf3b9fb82c32f5fc7e071003f607d795f3e261a4991a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKvg2VMOInrYmo9NNjmW4hcUBNFzmE0ndGXbrUn20H_vyhY9yhyGYR6eGV5CLjmbcc7svZ1JLYy0R2TClTKFUEIekwlj3BRWGH1KzlL6HEZdlnxC7uZ0F7sdxrynXaB5jfSt6_OaZqhbpLBd0SYn2ic8JycB2oQXhz4lH48P74vnYvn69LKYLwsvpcoFGoMaQPHaW1BsZbAOEGRtQ22ElyKo4CtkFWdMBs2qVWVVkCg0h9JaDnJKbkbv8NdXjym7TZM8ti1sseuTE5YxbWX5P2iUqEqrB_B2BH3sUooY3C42G4h7x5n7Cc1ZN4Y2oNcHJyQPbYiw9U365Yer0gw1JVcj1iDi33Z0fAPm2nGS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28527496</pqid></control><display><type>article</type><title>A property of the Routh table and its use</title><source>IEEE Electronic Library (IEL)</source><creator>Beghi, A. ; Lepschy, A. ; Viaro, U.</creator><creatorcontrib>Beghi, A. ; Lepschy, A. ; Viaro, U.</creatorcontrib><description>Starting from a given polynomial, the Routh algorithm recursively generates a family of all-pole transfer functions with the same energy of the impulse response and a suitable number of its derivatives. It is shown that each of these energies is given by a linear combination of some of the others according to the entries of a row of the Routh table for the given polynomial. This fact can be exploited to evaluate certain quadratic integrals in an efficient way.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.362839</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Character generation ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Differential equations ; Exact sciences and technology ; History ; Laplace equations ; Polynomials ; Robust stability ; Robustness ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 1994-12, Vol.39 (12), p.2494-2496</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e88e6aa51bc9a50d8ebfaf3b9fb82c32f5fc7e071003f607d795f3e261a4991a3</citedby><cites>FETCH-LOGICAL-c335t-e88e6aa51bc9a50d8ebfaf3b9fb82c32f5fc7e071003f607d795f3e261a4991a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/362839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/362839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3433838$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beghi, A.</creatorcontrib><creatorcontrib>Lepschy, A.</creatorcontrib><creatorcontrib>Viaro, U.</creatorcontrib><title>A property of the Routh table and its use</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Starting from a given polynomial, the Routh algorithm recursively generates a family of all-pole transfer functions with the same energy of the impulse response and a suitable number of its derivatives. It is shown that each of these energies is given by a linear combination of some of the others according to the entries of a row of the Routh table for the given polynomial. This fact can be exploited to evaluate certain quadratic integrals in an efficient way.< ></description><subject>Applied sciences</subject><subject>Character generation</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>History</subject><subject>Laplace equations</subject><subject>Polynomials</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKvg2VMOInrYmo9NNjmW4hcUBNFzmE0ndGXbrUn20H_vyhY9yhyGYR6eGV5CLjmbcc7svZ1JLYy0R2TClTKFUEIekwlj3BRWGH1KzlL6HEZdlnxC7uZ0F7sdxrynXaB5jfSt6_OaZqhbpLBd0SYn2ic8JycB2oQXhz4lH48P74vnYvn69LKYLwsvpcoFGoMaQPHaW1BsZbAOEGRtQ22ElyKo4CtkFWdMBs2qVWVVkCg0h9JaDnJKbkbv8NdXjym7TZM8ti1sseuTE5YxbWX5P2iUqEqrB_B2BH3sUooY3C42G4h7x5n7Cc1ZN4Y2oNcHJyQPbYiw9U365Yer0gw1JVcj1iDi33Z0fAPm2nGS</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>Beghi, A.</creator><creator>Lepschy, A.</creator><creator>Viaro, U.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19941201</creationdate><title>A property of the Routh table and its use</title><author>Beghi, A. ; Lepschy, A. ; Viaro, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e88e6aa51bc9a50d8ebfaf3b9fb82c32f5fc7e071003f607d795f3e261a4991a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Character generation</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>History</topic><topic>Laplace equations</topic><topic>Polynomials</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beghi, A.</creatorcontrib><creatorcontrib>Lepschy, A.</creatorcontrib><creatorcontrib>Viaro, U.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beghi, A.</au><au>Lepschy, A.</au><au>Viaro, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A property of the Routh table and its use</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1994-12-01</date><risdate>1994</risdate><volume>39</volume><issue>12</issue><spage>2494</spage><epage>2496</epage><pages>2494-2496</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Starting from a given polynomial, the Routh algorithm recursively generates a family of all-pole transfer functions with the same energy of the impulse response and a suitable number of its derivatives. It is shown that each of these energies is given by a linear combination of some of the others according to the entries of a row of the Routh table for the given polynomial. This fact can be exploited to evaluate certain quadratic integrals in an efficient way.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.362839</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1994-12, Vol.39 (12), p.2494-2496 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_362839 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Character generation Computer science control theory systems Control system analysis Control theory. Systems Differential equations Exact sciences and technology History Laplace equations Polynomials Robust stability Robustness Transfer functions |
title | A property of the Routh table and its use |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20property%20of%20the%20Routh%20table%20and%20its%20use&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Beghi,%20A.&rft.date=1994-12-01&rft.volume=39&rft.issue=12&rft.spage=2494&rft.epage=2496&rft.pages=2494-2496&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.362839&rft_dat=%3Cproquest_RIE%3E28527496%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28527496&rft_id=info:pmid/&rft_ieee_id=362839&rfr_iscdi=true |