The research on the relation of self-learning ratio and the convergence speed in BP networks

The relation of self-learning ratio and the convergence speed in BP network is proposed in this paper. In theory, only when the self-learning ratio /spl muspl rarr/0, the real gradient descent can be got, and the computation will converge to a certain local minimum point. But, a too small /spl mu/ w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weining Wen, Sixing Liu, Zhaoying Zhou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134 vol.1
container_issue
container_start_page 131
container_title
container_volume
creator Weining Wen
Sixing Liu
Zhaoying Zhou
description The relation of self-learning ratio and the convergence speed in BP network is proposed in this paper. In theory, only when the self-learning ratio /spl muspl rarr/0, the real gradient descent can be got, and the computation will converge to a certain local minimum point. But, a too small /spl mu/ will cause a slow convergence speed and a too large /spl mu/ may cause divergence. On the base of mathematical analysis and some computer simulations, the relation formula is given out as follows: n=ln[/spl epsi|W(0)-W*|]/ln(1-/spl mu/a) where n is the amount of iterative, /spl mu/ is self-learning ratio, w(0) is the original weight and w* is the best weight, /spl epsi/ is the precision requirement, a is the slope of gradient imitative straight line. It is also proposed for a method to determine a better self-learning ratio.< >
doi_str_mv 10.1109/IMTC.1994.352107
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_352107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>352107</ieee_id><sourcerecordid>352107</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-bdae706b9530e4d4d832e6027bf135432c05f84b4076da56e1fe55fa0c39b3d63</originalsourceid><addsrcrecordid>eNotUE1LxDAUDIigrHsXT_kDrS9N0iRHLX4srOih3oQlbV52ozVdkqL47627DgPDzDzeYQi5ZFAyBuZ69dQ2JTNGlFxWDNQJWRqlYSZnWoM5I8uc32GGlFoIOCdv7Q5pwow29Ts6Rjod_GCnMJvR04yDL4a5jiFuafrLqY3ucNeP8QvTFmOPNO8RHQ2R3r7QiNP3mD7yBTn1dsi4_NcFeb2_a5vHYv38sGpu1kVgSkxF5ywqqDsjOaBwwmleYQ2V6jzjUvCqB-m16ASo2llZI_MopbfQc9NxV_MFuTr-DYi42afwadPP5jgB_wWMgVGg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The research on the relation of self-learning ratio and the convergence speed in BP networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weining Wen ; Sixing Liu ; Zhaoying Zhou</creator><creatorcontrib>Weining Wen ; Sixing Liu ; Zhaoying Zhou</creatorcontrib><description>The relation of self-learning ratio and the convergence speed in BP network is proposed in this paper. In theory, only when the self-learning ratio /spl muspl rarr/0, the real gradient descent can be got, and the computation will converge to a certain local minimum point. But, a too small /spl mu/ will cause a slow convergence speed and a too large /spl mu/ may cause divergence. On the base of mathematical analysis and some computer simulations, the relation formula is given out as follows: n=ln[/spl epsi|W(0)-W*|]/ln(1-/spl mu/a) where n is the amount of iterative, /spl mu/ is self-learning ratio, w(0) is the original weight and w* is the best weight, /spl epsi/ is the precision requirement, a is the slope of gradient imitative straight line. It is also proposed for a method to determine a better self-learning ratio.&lt; &gt;</description><identifier>ISBN: 9780780318809</identifier><identifier>ISBN: 0780318803</identifier><identifier>DOI: 10.1109/IMTC.1994.352107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer networks ; Computer simulation ; Convergence ; Feedforward neural networks ; Intelligent networks ; Mathematical analysis ; Motion control ; Neural networks ; Neurons</subject><ispartof>Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I &amp; M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9), 1994, p.131-134 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/352107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/352107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weining Wen</creatorcontrib><creatorcontrib>Sixing Liu</creatorcontrib><creatorcontrib>Zhaoying Zhou</creatorcontrib><title>The research on the relation of self-learning ratio and the convergence speed in BP networks</title><title>Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I &amp; M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)</title><addtitle>IMTC</addtitle><description>The relation of self-learning ratio and the convergence speed in BP network is proposed in this paper. In theory, only when the self-learning ratio /spl muspl rarr/0, the real gradient descent can be got, and the computation will converge to a certain local minimum point. But, a too small /spl mu/ will cause a slow convergence speed and a too large /spl mu/ may cause divergence. On the base of mathematical analysis and some computer simulations, the relation formula is given out as follows: n=ln[/spl epsi|W(0)-W*|]/ln(1-/spl mu/a) where n is the amount of iterative, /spl mu/ is self-learning ratio, w(0) is the original weight and w* is the best weight, /spl epsi/ is the precision requirement, a is the slope of gradient imitative straight line. It is also proposed for a method to determine a better self-learning ratio.&lt; &gt;</description><subject>Artificial neural networks</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Feedforward neural networks</subject><subject>Intelligent networks</subject><subject>Mathematical analysis</subject><subject>Motion control</subject><subject>Neural networks</subject><subject>Neurons</subject><isbn>9780780318809</isbn><isbn>0780318803</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1LxDAUDIigrHsXT_kDrS9N0iRHLX4srOih3oQlbV52ozVdkqL47627DgPDzDzeYQi5ZFAyBuZ69dQ2JTNGlFxWDNQJWRqlYSZnWoM5I8uc32GGlFoIOCdv7Q5pwow29Ts6Rjod_GCnMJvR04yDL4a5jiFuafrLqY3ucNeP8QvTFmOPNO8RHQ2R3r7QiNP3mD7yBTn1dsi4_NcFeb2_a5vHYv38sGpu1kVgSkxF5ywqqDsjOaBwwmleYQ2V6jzjUvCqB-m16ASo2llZI_MopbfQc9NxV_MFuTr-DYi42afwadPP5jgB_wWMgVGg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Weining Wen</creator><creator>Sixing Liu</creator><creator>Zhaoying Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>The research on the relation of self-learning ratio and the convergence speed in BP networks</title><author>Weining Wen ; Sixing Liu ; Zhaoying Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-bdae706b9530e4d4d832e6027bf135432c05f84b4076da56e1fe55fa0c39b3d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Artificial neural networks</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Feedforward neural networks</topic><topic>Intelligent networks</topic><topic>Mathematical analysis</topic><topic>Motion control</topic><topic>Neural networks</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Weining Wen</creatorcontrib><creatorcontrib>Sixing Liu</creatorcontrib><creatorcontrib>Zhaoying Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weining Wen</au><au>Sixing Liu</au><au>Zhaoying Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The research on the relation of self-learning ratio and the convergence speed in BP networks</atitle><btitle>Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I &amp; M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)</btitle><stitle>IMTC</stitle><date>1994</date><risdate>1994</risdate><spage>131</spage><epage>134 vol.1</epage><pages>131-134 vol.1</pages><isbn>9780780318809</isbn><isbn>0780318803</isbn><abstract>The relation of self-learning ratio and the convergence speed in BP network is proposed in this paper. In theory, only when the self-learning ratio /spl muspl rarr/0, the real gradient descent can be got, and the computation will converge to a certain local minimum point. But, a too small /spl mu/ will cause a slow convergence speed and a too large /spl mu/ may cause divergence. On the base of mathematical analysis and some computer simulations, the relation formula is given out as follows: n=ln[/spl epsi|W(0)-W*|]/ln(1-/spl mu/a) where n is the amount of iterative, /spl mu/ is self-learning ratio, w(0) is the original weight and w* is the best weight, /spl epsi/ is the precision requirement, a is the slope of gradient imitative straight line. It is also proposed for a method to determine a better self-learning ratio.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/IMTC.1994.352107</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780318809
ispartof Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9), 1994, p.131-134 vol.1
issn
language eng
recordid cdi_ieee_primary_352107
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computer networks
Computer simulation
Convergence
Feedforward neural networks
Intelligent networks
Mathematical analysis
Motion control
Neural networks
Neurons
title The research on the relation of self-learning ratio and the convergence speed in BP networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20research%20on%20the%20relation%20of%20self-learning%20ratio%20and%20the%20convergence%20speed%20in%20BP%20networks&rft.btitle=Conference%20Proceedings.%2010th%20Anniversary.%20IMTC/94.%20Advanced%20Technologies%20in%20I%20&%20M.%201994%20IEEE%20Instrumentation%20and%20Measurement%20Technolgy%20Conference%20(Cat.%20No.94CH3424-9)&rft.au=Weining%20Wen&rft.date=1994&rft.spage=131&rft.epage=134%20vol.1&rft.pages=131-134%20vol.1&rft.isbn=9780780318809&rft.isbn_list=0780318803&rft_id=info:doi/10.1109/IMTC.1994.352107&rft_dat=%3Cieee_6IE%3E352107%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=352107&rfr_iscdi=true