Parallel computing algorithm of neural networks on an eight-neighbor processor array

The authors describe a parallel computing algorithm to simulate the backpropagation (BP) model and Kohonen's self-organizing feature map (SOFM) upon an eight-neighbor processor array. Taking account of the parallelism intrinsically found in neural networks, algorithms are presented which minimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takeda, T., Tanaka, A., Tanno, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors describe a parallel computing algorithm to simulate the backpropagation (BP) model and Kohonen's self-organizing feature map (SOFM) upon an eight-neighbor processor array. Taking account of the parallelism intrinsically found in neural networks, algorithms are presented which minimize the transmission overhead among processors, so that high-speed simulation of neural networks becomes feasible. The processing time required for one learning of BP or Kohonen's SOFM for one input vector is estimated.< >
DOI:10.1109/PCCC.1993.344530