Coherent grouping of power systems for use in training artificial neural networks
This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load b...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 vol.1 |
---|---|
container_issue | |
container_start_page | 704 |
container_title | |
container_volume | |
creator | McFarlane, A.S. Alden, R.T.H. |
description | This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.< > |
doi_str_mv | 10.1109/MWSCAS.1993.342949 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_342949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>342949</ieee_id><sourcerecordid>342949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-86411c8bf27f6abe4343b05f161eb4cd541bd386d57ec1bfe80d3e92202d1d0d3</originalsourceid><addsrcrecordid>eNotj9tKAzEYhAMiKHVfoFd5gV3zb7KHXJbFE1REqnhZks2fGm03S5Kl9O1drcPANxfDwBCyBFYAMHn7_LHpVpsCpOQFF6UU8oJksmnZbA5NzcQVyWL8YrNExRomrslr5z8x4JDoLvhpdMOOektHf8RA4ykmPERqfaBTROoGmoJyw29JheSs653a0wGn8Id09OE73pBLq_YRs38uyPv93Vv3mK9fHp661Tp3wETK21oA9K22ZWNrpVFwwTWrLNSAWvSmEqANb2tTNdiDttgyw1GWJSsNmDkvyPK86xBxOwZ3UOG0Pf_mPyCZT9Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Coherent grouping of power systems for use in training artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>McFarlane, A.S. ; Alden, R.T.H.</creator><creatorcontrib>McFarlane, A.S. ; Alden, R.T.H.</creatorcontrib><description>This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.< ></description><identifier>ISBN: 9780780317604</identifier><identifier>ISBN: 0780317602</identifier><identifier>DOI: 10.1109/MWSCAS.1993.342949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Artificial neural networks ; Circuit faults ; Circuit simulation ; Feature extraction ; Intelligent networks ; Power generation ; Power system simulation ; Power system transients ; Power systems</subject><ispartof>Proceedings of 36th Midwest Symposium on Circuits and Systems, 1993, p.704-707 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/342949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/342949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McFarlane, A.S.</creatorcontrib><creatorcontrib>Alden, R.T.H.</creatorcontrib><title>Coherent grouping of power systems for use in training artificial neural networks</title><title>Proceedings of 36th Midwest Symposium on Circuits and Systems</title><addtitle>MWSCAS</addtitle><description>This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.< ></description><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Circuit faults</subject><subject>Circuit simulation</subject><subject>Feature extraction</subject><subject>Intelligent networks</subject><subject>Power generation</subject><subject>Power system simulation</subject><subject>Power system transients</subject><subject>Power systems</subject><isbn>9780780317604</isbn><isbn>0780317602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKAzEYhAMiKHVfoFd5gV3zb7KHXJbFE1REqnhZks2fGm03S5Kl9O1drcPANxfDwBCyBFYAMHn7_LHpVpsCpOQFF6UU8oJksmnZbA5NzcQVyWL8YrNExRomrslr5z8x4JDoLvhpdMOOektHf8RA4ykmPERqfaBTROoGmoJyw29JheSs653a0wGn8Id09OE73pBLq_YRs38uyPv93Vv3mK9fHp661Tp3wETK21oA9K22ZWNrpVFwwTWrLNSAWvSmEqANb2tTNdiDttgyw1GWJSsNmDkvyPK86xBxOwZ3UOG0Pf_mPyCZT9Q</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>McFarlane, A.S.</creator><creator>Alden, R.T.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1993</creationdate><title>Coherent grouping of power systems for use in training artificial neural networks</title><author>McFarlane, A.S. ; Alden, R.T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-86411c8bf27f6abe4343b05f161eb4cd541bd386d57ec1bfe80d3e92202d1d0d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Circuit faults</topic><topic>Circuit simulation</topic><topic>Feature extraction</topic><topic>Intelligent networks</topic><topic>Power generation</topic><topic>Power system simulation</topic><topic>Power system transients</topic><topic>Power systems</topic><toplevel>online_resources</toplevel><creatorcontrib>McFarlane, A.S.</creatorcontrib><creatorcontrib>Alden, R.T.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McFarlane, A.S.</au><au>Alden, R.T.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coherent grouping of power systems for use in training artificial neural networks</atitle><btitle>Proceedings of 36th Midwest Symposium on Circuits and Systems</btitle><stitle>MWSCAS</stitle><date>1993</date><risdate>1993</risdate><spage>704</spage><epage>707 vol.1</epage><pages>704-707 vol.1</pages><isbn>9780780317604</isbn><isbn>0780317602</isbn><abstract>This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.< ></abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.1993.342949</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780317604 |
ispartof | Proceedings of 36th Midwest Symposium on Circuits and Systems, 1993, p.704-707 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_342949 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Artificial neural networks Circuit faults Circuit simulation Feature extraction Intelligent networks Power generation Power system simulation Power system transients Power systems |
title | Coherent grouping of power systems for use in training artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coherent%20grouping%20of%20power%20systems%20for%20use%20in%20training%20artificial%20neural%20networks&rft.btitle=Proceedings%20of%2036th%20Midwest%20Symposium%20on%20Circuits%20and%20Systems&rft.au=McFarlane,%20A.S.&rft.date=1993&rft.spage=704&rft.epage=707%20vol.1&rft.pages=704-707%20vol.1&rft.isbn=9780780317604&rft.isbn_list=0780317602&rft_id=info:doi/10.1109/MWSCAS.1993.342949&rft_dat=%3Cieee_6IE%3E342949%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=342949&rfr_iscdi=true |