Coherent grouping of power systems for use in training artificial neural networks

This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McFarlane, A.S., Alden, R.T.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707 vol.1
container_issue
container_start_page 704
container_title
container_volume
creator McFarlane, A.S.
Alden, R.T.H.
description This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.< >
doi_str_mv 10.1109/MWSCAS.1993.342949
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_342949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>342949</ieee_id><sourcerecordid>342949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-86411c8bf27f6abe4343b05f161eb4cd541bd386d57ec1bfe80d3e92202d1d0d3</originalsourceid><addsrcrecordid>eNotj9tKAzEYhAMiKHVfoFd5gV3zb7KHXJbFE1REqnhZks2fGm03S5Kl9O1drcPANxfDwBCyBFYAMHn7_LHpVpsCpOQFF6UU8oJksmnZbA5NzcQVyWL8YrNExRomrslr5z8x4JDoLvhpdMOOektHf8RA4ykmPERqfaBTROoGmoJyw29JheSs653a0wGn8Id09OE73pBLq_YRs38uyPv93Vv3mK9fHp661Tp3wETK21oA9K22ZWNrpVFwwTWrLNSAWvSmEqANb2tTNdiDttgyw1GWJSsNmDkvyPK86xBxOwZ3UOG0Pf_mPyCZT9Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Coherent grouping of power systems for use in training artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>McFarlane, A.S. ; Alden, R.T.H.</creator><creatorcontrib>McFarlane, A.S. ; Alden, R.T.H.</creatorcontrib><description>This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.&lt; &gt;</description><identifier>ISBN: 9780780317604</identifier><identifier>ISBN: 0780317602</identifier><identifier>DOI: 10.1109/MWSCAS.1993.342949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Artificial neural networks ; Circuit faults ; Circuit simulation ; Feature extraction ; Intelligent networks ; Power generation ; Power system simulation ; Power system transients ; Power systems</subject><ispartof>Proceedings of 36th Midwest Symposium on Circuits and Systems, 1993, p.704-707 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/342949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/342949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McFarlane, A.S.</creatorcontrib><creatorcontrib>Alden, R.T.H.</creatorcontrib><title>Coherent grouping of power systems for use in training artificial neural networks</title><title>Proceedings of 36th Midwest Symposium on Circuits and Systems</title><addtitle>MWSCAS</addtitle><description>This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.&lt; &gt;</description><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Circuit faults</subject><subject>Circuit simulation</subject><subject>Feature extraction</subject><subject>Intelligent networks</subject><subject>Power generation</subject><subject>Power system simulation</subject><subject>Power system transients</subject><subject>Power systems</subject><isbn>9780780317604</isbn><isbn>0780317602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKAzEYhAMiKHVfoFd5gV3zb7KHXJbFE1REqnhZks2fGm03S5Kl9O1drcPANxfDwBCyBFYAMHn7_LHpVpsCpOQFF6UU8oJksmnZbA5NzcQVyWL8YrNExRomrslr5z8x4JDoLvhpdMOOektHf8RA4ykmPERqfaBTROoGmoJyw29JheSs653a0wGn8Id09OE73pBLq_YRs38uyPv93Vv3mK9fHp661Tp3wETK21oA9K22ZWNrpVFwwTWrLNSAWvSmEqANb2tTNdiDttgyw1GWJSsNmDkvyPK86xBxOwZ3UOG0Pf_mPyCZT9Q</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>McFarlane, A.S.</creator><creator>Alden, R.T.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1993</creationdate><title>Coherent grouping of power systems for use in training artificial neural networks</title><author>McFarlane, A.S. ; Alden, R.T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-86411c8bf27f6abe4343b05f161eb4cd541bd386d57ec1bfe80d3e92202d1d0d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Circuit faults</topic><topic>Circuit simulation</topic><topic>Feature extraction</topic><topic>Intelligent networks</topic><topic>Power generation</topic><topic>Power system simulation</topic><topic>Power system transients</topic><topic>Power systems</topic><toplevel>online_resources</toplevel><creatorcontrib>McFarlane, A.S.</creatorcontrib><creatorcontrib>Alden, R.T.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McFarlane, A.S.</au><au>Alden, R.T.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coherent grouping of power systems for use in training artificial neural networks</atitle><btitle>Proceedings of 36th Midwest Symposium on Circuits and Systems</btitle><stitle>MWSCAS</stitle><date>1993</date><risdate>1993</risdate><spage>704</spage><epage>707 vol.1</epage><pages>704-707 vol.1</pages><isbn>9780780317604</isbn><isbn>0780317602</isbn><abstract>This paper presents a methodology for applying artificial neural networks to power systems of various sizes while addressing the problem of increasing training set size with increasing power system size. A slow-coherency based network partitioning technique is used to group the generators and load buses of the 10-machine, 39-bus system into coherent areas. Next we use characteristic parameters of each area as input features to train and perform estimations using a feed-forward neural network.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.1993.342949</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780317604
ispartof Proceedings of 36th Midwest Symposium on Circuits and Systems, 1993, p.704-707 vol.1
issn
language eng
recordid cdi_ieee_primary_342949
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Artificial neural networks
Circuit faults
Circuit simulation
Feature extraction
Intelligent networks
Power generation
Power system simulation
Power system transients
Power systems
title Coherent grouping of power systems for use in training artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coherent%20grouping%20of%20power%20systems%20for%20use%20in%20training%20artificial%20neural%20networks&rft.btitle=Proceedings%20of%2036th%20Midwest%20Symposium%20on%20Circuits%20and%20Systems&rft.au=McFarlane,%20A.S.&rft.date=1993&rft.spage=704&rft.epage=707%20vol.1&rft.pages=704-707%20vol.1&rft.isbn=9780780317604&rft.isbn_list=0780317602&rft_id=info:doi/10.1109/MWSCAS.1993.342949&rft_dat=%3Cieee_6IE%3E342949%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=342949&rfr_iscdi=true