Hierarchical control structure for multisensor object recognition system

Multisensors can be used to overcome problems associated with intelligent object recognition systems. The introduction of multisensors into such a system emphasizes the need for an effective method for combining sensor outputs, and a complicated system requires intelligent control. We propose a hier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hong, Chen, Yongbao, He
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814 vol.2
container_issue
container_start_page 811
container_title
container_volume 2
creator Hong, Chen
Yongbao, He
description Multisensors can be used to overcome problems associated with intelligent object recognition systems. The introduction of multisensors into such a system emphasizes the need for an effective method for combining sensor outputs, and a complicated system requires intelligent control. We propose a hierarchical control structure (HCS) to build a recognition system and introduce a fuzzy neural net (FNN) method to fuse multisensor information. This paper describes the concept of HCS, the derivation of fuzzy rules, the FNN's construction and training, etc. Then, experimental results involving parts recognition in the application of an assembly robot are presented.< >
doi_str_mv 10.1109/TENCON.1993.320137
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_320137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>320137</ieee_id><sourcerecordid>26067424</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-859dd8d6b03ad60ab2d0ae46746e8c3f8df7943956db3977c804252868c0f65c3</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0hJKD0BzplYkux_RzHHlFVKFLVLmWOHPsFXCVxsZ2hf0-kcpd7h6MzXEJWjK4Zo_r1tD1sjoc10xrWwCmD-o480VpRYBwAHsgypTOdIwRIwR7Jbucxmmh_vDV9YcOYY-iLlONk8xSx6EIshqnPPuGY5h3aM9pcRLThe_TZh7FI15RxeCb3nekTLv97Qb7et6fNrtwfPz43b_vScwq5VJV2TjnZUjBOUtNyRw0KWQuJykKnXFdrAbqSrgVd11ZRwSuupLK0k5WFBXm5eS8x_E6YcjP4ZLHvzYhhSg2XdJZxMYOrG-gRsblEP5h4bW6nwB_sC1kV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26067424</pqid></control><display><type>conference_proceeding</type><title>Hierarchical control structure for multisensor object recognition system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hong, Chen ; Yongbao, He</creator><creatorcontrib>Hong, Chen ; Yongbao, He</creatorcontrib><description>Multisensors can be used to overcome problems associated with intelligent object recognition systems. The introduction of multisensors into such a system emphasizes the need for an effective method for combining sensor outputs, and a complicated system requires intelligent control. We propose a hierarchical control structure (HCS) to build a recognition system and introduce a fuzzy neural net (FNN) method to fuse multisensor information. This paper describes the concept of HCS, the derivation of fuzzy rules, the FNN's construction and training, etc. Then, experimental results involving parts recognition in the application of an assembly robot are presented.&lt; &gt;</description><identifier>ISBN: 0780312333</identifier><identifier>ISBN: 9780780312333</identifier><identifier>DOI: 10.1109/TENCON.1993.320137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Fuzzy control ; Fuzzy neural networks ; Fuzzy systems ; Intelligent control ; Intelligent sensors ; Intelligent systems ; Neural networks ; Object recognition ; Sensor systems</subject><ispartof>Proceedings / TENCON '93, 1993 IEEE Region 10 Conference on "Computer, Communication, Control, and Power Engineering", October 19-21, 1993, Beijing, Beijing International Convention Center, Beijing Continental Grand Hotel, 1993, Vol.2, p.811-814 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/320137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4050,4051,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/320137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Chen</creatorcontrib><creatorcontrib>Yongbao, He</creatorcontrib><title>Hierarchical control structure for multisensor object recognition system</title><title>Proceedings / TENCON '93, 1993 IEEE Region 10 Conference on "Computer, Communication, Control, and Power Engineering", October 19-21, 1993, Beijing, Beijing International Convention Center, Beijing Continental Grand Hotel</title><addtitle>TENCON</addtitle><description>Multisensors can be used to overcome problems associated with intelligent object recognition systems. The introduction of multisensors into such a system emphasizes the need for an effective method for combining sensor outputs, and a complicated system requires intelligent control. We propose a hierarchical control structure (HCS) to build a recognition system and introduce a fuzzy neural net (FNN) method to fuse multisensor information. This paper describes the concept of HCS, the derivation of fuzzy rules, the FNN's construction and training, etc. Then, experimental results involving parts recognition in the application of an assembly robot are presented.&lt; &gt;</description><subject>Control systems</subject><subject>Fuzzy control</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Intelligent control</subject><subject>Intelligent sensors</subject><subject>Intelligent systems</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Sensor systems</subject><isbn>0780312333</isbn><isbn>9780780312333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkLFOwzAURS0hJKD0BzplYkux_RzHHlFVKFLVLmWOHPsFXCVxsZ2hf0-kcpd7h6MzXEJWjK4Zo_r1tD1sjoc10xrWwCmD-o480VpRYBwAHsgypTOdIwRIwR7Jbucxmmh_vDV9YcOYY-iLlONk8xSx6EIshqnPPuGY5h3aM9pcRLThe_TZh7FI15RxeCb3nekTLv97Qb7et6fNrtwfPz43b_vScwq5VJV2TjnZUjBOUtNyRw0KWQuJykKnXFdrAbqSrgVd11ZRwSuupLK0k5WFBXm5eS8x_E6YcjP4ZLHvzYhhSg2XdJZxMYOrG-gRsblEP5h4bW6nwB_sC1kV</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Hong, Chen</creator><creator>Yongbao, He</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1993</creationdate><title>Hierarchical control structure for multisensor object recognition system</title><author>Hong, Chen ; Yongbao, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-859dd8d6b03ad60ab2d0ae46746e8c3f8df7943956db3977c804252868c0f65c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Control systems</topic><topic>Fuzzy control</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Intelligent control</topic><topic>Intelligent sensors</topic><topic>Intelligent systems</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Chen</creatorcontrib><creatorcontrib>Yongbao, He</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Chen</au><au>Yongbao, He</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical control structure for multisensor object recognition system</atitle><btitle>Proceedings / TENCON '93, 1993 IEEE Region 10 Conference on "Computer, Communication, Control, and Power Engineering", October 19-21, 1993, Beijing, Beijing International Convention Center, Beijing Continental Grand Hotel</btitle><stitle>TENCON</stitle><date>1993</date><risdate>1993</risdate><volume>2</volume><spage>811</spage><epage>814 vol.2</epage><pages>811-814 vol.2</pages><isbn>0780312333</isbn><isbn>9780780312333</isbn><abstract>Multisensors can be used to overcome problems associated with intelligent object recognition systems. The introduction of multisensors into such a system emphasizes the need for an effective method for combining sensor outputs, and a complicated system requires intelligent control. We propose a hierarchical control structure (HCS) to build a recognition system and introduce a fuzzy neural net (FNN) method to fuse multisensor information. This paper describes the concept of HCS, the derivation of fuzzy rules, the FNN's construction and training, etc. Then, experimental results involving parts recognition in the application of an assembly robot are presented.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/TENCON.1993.320137</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780312333
ispartof Proceedings / TENCON '93, 1993 IEEE Region 10 Conference on "Computer, Communication, Control, and Power Engineering", October 19-21, 1993, Beijing, Beijing International Convention Center, Beijing Continental Grand Hotel, 1993, Vol.2, p.811-814 vol.2
issn
language eng
recordid cdi_ieee_primary_320137
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Fuzzy control
Fuzzy neural networks
Fuzzy systems
Intelligent control
Intelligent sensors
Intelligent systems
Neural networks
Object recognition
Sensor systems
title Hierarchical control structure for multisensor object recognition system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20control%20structure%20for%20multisensor%20object%20recognition%20system&rft.btitle=Proceedings%20/%20TENCON%20'93,%201993%20IEEE%20Region%2010%20Conference%20on%20%22Computer,%20Communication,%20Control,%20and%20Power%20Engineering%22,%20October%2019-21,%201993,%20Beijing,%20Beijing%20International%20Convention%20Center,%20Beijing%20Continental%20Grand%20Hotel&rft.au=Hong,%20Chen&rft.date=1993&rft.volume=2&rft.spage=811&rft.epage=814%20vol.2&rft.pages=811-814%20vol.2&rft.isbn=0780312333&rft.isbn_list=9780780312333&rft_id=info:doi/10.1109/TENCON.1993.320137&rft_dat=%3Cproquest_6IE%3E26067424%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26067424&rft_id=info:pmid/&rft_ieee_id=320137&rfr_iscdi=true