A syntactic characterization of NP-completeness

Fagin (1974) proved that NP is equal to the set of problems expressible in second-order existential logic (SO/spl exist/). We consider problems that are NP-complete via first-order projections (fops). These low-level reductions are known to have nice properties, including the fact that every pair of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Medina, J.A., Immerman, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue
container_start_page 241
container_title
container_volume
creator Medina, J.A.
Immerman, N.
description Fagin (1974) proved that NP is equal to the set of problems expressible in second-order existential logic (SO/spl exist/). We consider problems that are NP-complete via first-order projections (fops). These low-level reductions are known to have nice properties, including the fact that every pair of problems that are NP-complete via fops are isomorphic via a first-order definable isomorphism (E. Allender et al., 1993). However, before this paper, fewer than five natural problems had actually been shown to be NP-complete via fops. We give a necessary and sufficient syntactic condition for an SO/spl exist/ formula to represent a problem that is NP-complete via fops. Using this condition we prove syntactically that 29 natural NP-complete problems remain complete via fops.< >
doi_str_mv 10.1109/LICS.1994.316065
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_316065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>316065</ieee_id><sourcerecordid>316065</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-a2c71a7d23232f288eee919d930de372dfefa32040f183f8c06414b668ecf2c93</originalsourceid><addsrcrecordid>eNotT8FqwzAUM4zBRpf72Ck_kPQ923HsYwnbWghtYdu5eM4z82iTEvvSff0MrXSQDpJAjD0j1Ihglv2m-6jRGFkLVKCaO1aYVoNGrZTIgQdWxPgLGU2jpeGPbLkq42VM1qXgSvdj5-xoDn82hWksJ19u95WbTucjJRopxid27-0xUnHTBft6e_3s1lW_e990q74KCDJVlrsWbTtwkem51kRk0AxGwECi5YMnbwUHCR618NqBkii_ldLkPHdGLNjLdTfk5uE8h5OdL4frK_EPtr1BtQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A syntactic characterization of NP-completeness</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Medina, J.A. ; Immerman, N.</creator><creatorcontrib>Medina, J.A. ; Immerman, N.</creatorcontrib><description>Fagin (1974) proved that NP is equal to the set of problems expressible in second-order existential logic (SO/spl exist/). We consider problems that are NP-complete via first-order projections (fops). These low-level reductions are known to have nice properties, including the fact that every pair of problems that are NP-complete via fops are isomorphic via a first-order definable isomorphism (E. Allender et al., 1993). However, before this paper, fewer than five natural problems had actually been shown to be NP-complete via fops. We give a necessary and sufficient syntactic condition for an SO/spl exist/ formula to represent a problem that is NP-complete via fops. Using this condition we prove syntactically that 29 natural NP-complete problems remain complete via fops.&lt; &gt;</description><identifier>ISBN: 9780818663109</identifier><identifier>ISBN: 0818663103</identifier><identifier>DOI: 10.1109/LICS.1994.316065</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Computer science ; Logic ; NP-complete problem ; Sufficient conditions ; Vocabulary</subject><ispartof>Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, 1994, p.241-250</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/316065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/316065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Medina, J.A.</creatorcontrib><creatorcontrib>Immerman, N.</creatorcontrib><title>A syntactic characterization of NP-completeness</title><title>Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science</title><addtitle>LICS</addtitle><description>Fagin (1974) proved that NP is equal to the set of problems expressible in second-order existential logic (SO/spl exist/). We consider problems that are NP-complete via first-order projections (fops). These low-level reductions are known to have nice properties, including the fact that every pair of problems that are NP-complete via fops are isomorphic via a first-order definable isomorphism (E. Allender et al., 1993). However, before this paper, fewer than five natural problems had actually been shown to be NP-complete via fops. We give a necessary and sufficient syntactic condition for an SO/spl exist/ formula to represent a problem that is NP-complete via fops. Using this condition we prove syntactically that 29 natural NP-complete problems remain complete via fops.&lt; &gt;</description><subject>Computer science</subject><subject>Logic</subject><subject>NP-complete problem</subject><subject>Sufficient conditions</subject><subject>Vocabulary</subject><isbn>9780818663109</isbn><isbn>0818663103</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8FqwzAUM4zBRpf72Ck_kPQ923HsYwnbWghtYdu5eM4z82iTEvvSff0MrXSQDpJAjD0j1Ihglv2m-6jRGFkLVKCaO1aYVoNGrZTIgQdWxPgLGU2jpeGPbLkq42VM1qXgSvdj5-xoDn82hWksJ19u95WbTucjJRopxid27-0xUnHTBft6e_3s1lW_e990q74KCDJVlrsWbTtwkem51kRk0AxGwECi5YMnbwUHCR618NqBkii_ldLkPHdGLNjLdTfk5uE8h5OdL4frK_EPtr1BtQ</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Medina, J.A.</creator><creator>Immerman, N.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>A syntactic characterization of NP-completeness</title><author>Medina, J.A. ; Immerman, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-a2c71a7d23232f288eee919d930de372dfefa32040f183f8c06414b668ecf2c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Computer science</topic><topic>Logic</topic><topic>NP-complete problem</topic><topic>Sufficient conditions</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Medina, J.A.</creatorcontrib><creatorcontrib>Immerman, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Medina, J.A.</au><au>Immerman, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A syntactic characterization of NP-completeness</atitle><btitle>Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science</btitle><stitle>LICS</stitle><date>1994</date><risdate>1994</risdate><spage>241</spage><epage>250</epage><pages>241-250</pages><isbn>9780818663109</isbn><isbn>0818663103</isbn><abstract>Fagin (1974) proved that NP is equal to the set of problems expressible in second-order existential logic (SO/spl exist/). We consider problems that are NP-complete via first-order projections (fops). These low-level reductions are known to have nice properties, including the fact that every pair of problems that are NP-complete via fops are isomorphic via a first-order definable isomorphism (E. Allender et al., 1993). However, before this paper, fewer than five natural problems had actually been shown to be NP-complete via fops. We give a necessary and sufficient syntactic condition for an SO/spl exist/ formula to represent a problem that is NP-complete via fops. Using this condition we prove syntactically that 29 natural NP-complete problems remain complete via fops.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/LICS.1994.316065</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818663109
ispartof Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, 1994, p.241-250
issn
language eng
recordid cdi_ieee_primary_316065
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Logic
NP-complete problem
Sufficient conditions
Vocabulary
title A syntactic characterization of NP-completeness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20syntactic%20characterization%20of%20NP-completeness&rft.btitle=Proceedings%20Ninth%20Annual%20IEEE%20Symposium%20on%20Logic%20in%20Computer%20Science&rft.au=Medina,%20J.A.&rft.date=1994&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.isbn=9780818663109&rft.isbn_list=0818663103&rft_id=info:doi/10.1109/LICS.1994.316065&rft_dat=%3Cieee_6IE%3E316065%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=316065&rfr_iscdi=true