Automatic registration for multiple sclerosis change detection
The authors are developing an automated 3D change detection system which accurately registers medical imagery (e.g., MRI or CT) of the same patient from different times for diagnosing pathologies, monitoring treatment, and tracking tissue changes. The system employs a combination of energy-minimizat...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | |
container_start_page | 297 |
container_title | |
container_volume | |
creator | Ettinger, G.J. Grimson, W.E.L. Lozano-Perez, T. Wells, W.M. White, S.J. Kikinis, R. |
description | The authors are developing an automated 3D change detection system which accurately registers medical imagery (e.g., MRI or CT) of the same patient from different times for diagnosing pathologies, monitoring treatment, and tracking tissue changes. The system employs a combination of energy-minimization registration techniques to achieve accurate and robust alignment of 3D data sets. The bases for the registration are 3D surfaces extracted from the 3D imagery. Resultant structural changes in the data are identified by using an adaptive segmentation technique to automatically determine tissue morphology. The novel contributions of this work are its end-to-end automation of the change detection process and its high accuracy in monitoring and highlighting such physiological changes. The authors have applied this system to a multiple sclerosis study in which each patient had been imaged over 20 times for the purpose of tracking lesion evolution. This report describes preliminary registration performance analysis using this data.< > |
doi_str_mv | 10.1109/BIA.1994.315885 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_315885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>315885</ieee_id><sourcerecordid>315885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655-d45eb6bf9e4681f050a75d0b79440fea3e958097322f3f1f547c2591633174263</originalsourceid><addsrcrecordid>eNotj01LAzEYhAMiKHXPgqf8gV3ffCcXYS1qCwUvvZds9k2N7HZLsj34712pc5k5DMMzhDwyaBgD9_y6bRvmnGwEU9aqG1I5Y8Eyq5UFDnekKuUbFkkFSpp78tJe5mn0cwo04zGVOS95OtE4ZTpehjmdB6QlDJinkgoNX_50RNrjjOGv90Buox8KVv--Ivv3t_16U-8-P7brdlcHrVTdS4Wd7qJDqS2LoMAb1UNnnJQQ0Qt0C54zgvMoIosLWeDKMS0EM5JrsSJP19mEiIdzTqPPP4frR_ELJ81GJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic registration for multiple sclerosis change detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ettinger, G.J. ; Grimson, W.E.L. ; Lozano-Perez, T. ; Wells, W.M. ; White, S.J. ; Kikinis, R.</creator><creatorcontrib>Ettinger, G.J. ; Grimson, W.E.L. ; Lozano-Perez, T. ; Wells, W.M. ; White, S.J. ; Kikinis, R.</creatorcontrib><description>The authors are developing an automated 3D change detection system which accurately registers medical imagery (e.g., MRI or CT) of the same patient from different times for diagnosing pathologies, monitoring treatment, and tracking tissue changes. The system employs a combination of energy-minimization registration techniques to achieve accurate and robust alignment of 3D data sets. The bases for the registration are 3D surfaces extracted from the 3D imagery. Resultant structural changes in the data are identified by using an adaptive segmentation technique to automatically determine tissue morphology. The novel contributions of this work are its end-to-end automation of the change detection process and its high accuracy in monitoring and highlighting such physiological changes. The authors have applied this system to a multiple sclerosis study in which each patient had been imaged over 20 times for the purpose of tracking lesion evolution. This report describes preliminary registration performance analysis using this data.< ></description><identifier>ISBN: 9780818658020</identifier><identifier>ISBN: 0818658029</identifier><identifier>DOI: 10.1109/BIA.1994.315885</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Biomedical imaging ; Biomedical monitoring ; Computed tomography ; Computerized monitoring ; Magnetic resonance imaging ; Medical diagnostic imaging ; Medical treatment ; Multiple sclerosis ; Pathology ; Patient monitoring</subject><ispartof>Proceedings of IEEE Workshop on Biomedical Image Analysis, 1994, p.297-306</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655-d45eb6bf9e4681f050a75d0b79440fea3e958097322f3f1f547c2591633174263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/315885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/315885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ettinger, G.J.</creatorcontrib><creatorcontrib>Grimson, W.E.L.</creatorcontrib><creatorcontrib>Lozano-Perez, T.</creatorcontrib><creatorcontrib>Wells, W.M.</creatorcontrib><creatorcontrib>White, S.J.</creatorcontrib><creatorcontrib>Kikinis, R.</creatorcontrib><title>Automatic registration for multiple sclerosis change detection</title><title>Proceedings of IEEE Workshop on Biomedical Image Analysis</title><addtitle>BIA</addtitle><description>The authors are developing an automated 3D change detection system which accurately registers medical imagery (e.g., MRI or CT) of the same patient from different times for diagnosing pathologies, monitoring treatment, and tracking tissue changes. The system employs a combination of energy-minimization registration techniques to achieve accurate and robust alignment of 3D data sets. The bases for the registration are 3D surfaces extracted from the 3D imagery. Resultant structural changes in the data are identified by using an adaptive segmentation technique to automatically determine tissue morphology. The novel contributions of this work are its end-to-end automation of the change detection process and its high accuracy in monitoring and highlighting such physiological changes. The authors have applied this system to a multiple sclerosis study in which each patient had been imaged over 20 times for the purpose of tracking lesion evolution. This report describes preliminary registration performance analysis using this data.< ></description><subject>Biomedical imaging</subject><subject>Biomedical monitoring</subject><subject>Computed tomography</subject><subject>Computerized monitoring</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnostic imaging</subject><subject>Medical treatment</subject><subject>Multiple sclerosis</subject><subject>Pathology</subject><subject>Patient monitoring</subject><isbn>9780818658020</isbn><isbn>0818658029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEYhAMiKHXPgqf8gV3ffCcXYS1qCwUvvZds9k2N7HZLsj34712pc5k5DMMzhDwyaBgD9_y6bRvmnGwEU9aqG1I5Y8Eyq5UFDnekKuUbFkkFSpp78tJe5mn0cwo04zGVOS95OtE4ZTpehjmdB6QlDJinkgoNX_50RNrjjOGv90Buox8KVv--Ivv3t_16U-8-P7brdlcHrVTdS4Wd7qJDqS2LoMAb1UNnnJQQ0Qt0C54zgvMoIosLWeDKMS0EM5JrsSJP19mEiIdzTqPPP4frR_ELJ81GJw</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Ettinger, G.J.</creator><creator>Grimson, W.E.L.</creator><creator>Lozano-Perez, T.</creator><creator>Wells, W.M.</creator><creator>White, S.J.</creator><creator>Kikinis, R.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Automatic registration for multiple sclerosis change detection</title><author>Ettinger, G.J. ; Grimson, W.E.L. ; Lozano-Perez, T. ; Wells, W.M. ; White, S.J. ; Kikinis, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655-d45eb6bf9e4681f050a75d0b79440fea3e958097322f3f1f547c2591633174263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Biomedical imaging</topic><topic>Biomedical monitoring</topic><topic>Computed tomography</topic><topic>Computerized monitoring</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnostic imaging</topic><topic>Medical treatment</topic><topic>Multiple sclerosis</topic><topic>Pathology</topic><topic>Patient monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Ettinger, G.J.</creatorcontrib><creatorcontrib>Grimson, W.E.L.</creatorcontrib><creatorcontrib>Lozano-Perez, T.</creatorcontrib><creatorcontrib>Wells, W.M.</creatorcontrib><creatorcontrib>White, S.J.</creatorcontrib><creatorcontrib>Kikinis, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ettinger, G.J.</au><au>Grimson, W.E.L.</au><au>Lozano-Perez, T.</au><au>Wells, W.M.</au><au>White, S.J.</au><au>Kikinis, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic registration for multiple sclerosis change detection</atitle><btitle>Proceedings of IEEE Workshop on Biomedical Image Analysis</btitle><stitle>BIA</stitle><date>1994</date><risdate>1994</risdate><spage>297</spage><epage>306</epage><pages>297-306</pages><isbn>9780818658020</isbn><isbn>0818658029</isbn><abstract>The authors are developing an automated 3D change detection system which accurately registers medical imagery (e.g., MRI or CT) of the same patient from different times for diagnosing pathologies, monitoring treatment, and tracking tissue changes. The system employs a combination of energy-minimization registration techniques to achieve accurate and robust alignment of 3D data sets. The bases for the registration are 3D surfaces extracted from the 3D imagery. Resultant structural changes in the data are identified by using an adaptive segmentation technique to automatically determine tissue morphology. The novel contributions of this work are its end-to-end automation of the change detection process and its high accuracy in monitoring and highlighting such physiological changes. The authors have applied this system to a multiple sclerosis study in which each patient had been imaged over 20 times for the purpose of tracking lesion evolution. This report describes preliminary registration performance analysis using this data.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/BIA.1994.315885</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780818658020 |
ispartof | Proceedings of IEEE Workshop on Biomedical Image Analysis, 1994, p.297-306 |
issn | |
language | eng |
recordid | cdi_ieee_primary_315885 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Biomedical monitoring Computed tomography Computerized monitoring Magnetic resonance imaging Medical diagnostic imaging Medical treatment Multiple sclerosis Pathology Patient monitoring |
title | Automatic registration for multiple sclerosis change detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20registration%20for%20multiple%20sclerosis%20change%20detection&rft.btitle=Proceedings%20of%20IEEE%20Workshop%20on%20Biomedical%20Image%20Analysis&rft.au=Ettinger,%20G.J.&rft.date=1994&rft.spage=297&rft.epage=306&rft.pages=297-306&rft.isbn=9780818658020&rft.isbn_list=0818658029&rft_id=info:doi/10.1109/BIA.1994.315885&rft_dat=%3Cieee_6IE%3E315885%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=315885&rfr_iscdi=true |