An intelligent system for design optimization of electromagnetic devices
An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1994-09, Vol.30 (5), p.3633-3636 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3636 |
---|---|
container_issue | 5 |
container_start_page | 3633 |
container_title | IEEE transactions on magnetics |
container_volume | 30 |
creator | Mohammed, O.A. Merchant, R. Uler, F.G. |
description | An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.< > |
doi_str_mv | 10.1109/20.312727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_312727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>312727</ieee_id><sourcerecordid>28457872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKsHr572IIKHrfnO7rEUtULBi56XbHZSIrubmqRC_euNbNG5DI_5zePxELomeEEIrh8oXjBCFVUnaEZqTkqMZX2KZhiTqqy55OfoIsaPLLkgeIbWy7FwY4K-d1sYUxEPMcFQWB-KDqLbjoXfJTe4b52cz8IW0INJwQ96O0JyJmNfzkC8RGdW9xGujnuO3p8e31brcvP6_LJabkrDsEylNpi3uLa6s4qRtiWiq4ySRkrDqjyCYdVCa5mmvBWWCcloKwSThBNeK8Hm6G7y3QX_uYeYmsFFk_PrEfw-NrTiQlWKZvB-Ak3wMQawzS64QYdDQ3Dz21VDcTN1ldnbo6mORvc26NG4-PfAmGC5uozdTJgDgP_r5PEDPOBwaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28457872</pqid></control><display><type>article</type><title>An intelligent system for design optimization of electromagnetic devices</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, O.A. ; Merchant, R. ; Uler, F.G.</creator><creatorcontrib>Mohammed, O.A. ; Merchant, R. ; Uler, F.G.</creatorcontrib><description>An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.< ></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.312727</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Computer science; control theory; systems ; Connectionism. Neural networks ; Design optimization ; Electromagnetic devices ; Equations ; Exact sciences and technology ; Finite element methods ; Geometry ; Intelligent systems ; Neural networks ; Simulated annealing ; Testing</subject><ispartof>IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3633-3636</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</citedby><cites>FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/312727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/312727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3353464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Merchant, R.</creatorcontrib><creatorcontrib>Uler, F.G.</creatorcontrib><title>An intelligent system for design optimization of electromagnetic devices</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Design optimization</subject><subject>Electromagnetic devices</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite element methods</subject><subject>Geometry</subject><subject>Intelligent systems</subject><subject>Neural networks</subject><subject>Simulated annealing</subject><subject>Testing</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKsHr572IIKHrfnO7rEUtULBi56XbHZSIrubmqRC_euNbNG5DI_5zePxELomeEEIrh8oXjBCFVUnaEZqTkqMZX2KZhiTqqy55OfoIsaPLLkgeIbWy7FwY4K-d1sYUxEPMcFQWB-KDqLbjoXfJTe4b52cz8IW0INJwQ96O0JyJmNfzkC8RGdW9xGujnuO3p8e31brcvP6_LJabkrDsEylNpi3uLa6s4qRtiWiq4ySRkrDqjyCYdVCa5mmvBWWCcloKwSThBNeK8Hm6G7y3QX_uYeYmsFFk_PrEfw-NrTiQlWKZvB-Ak3wMQawzS64QYdDQ3Dz21VDcTN1ldnbo6mORvc26NG4-PfAmGC5uozdTJgDgP_r5PEDPOBwaQ</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Mohammed, O.A.</creator><creator>Merchant, R.</creator><creator>Uler, F.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940901</creationdate><title>An intelligent system for design optimization of electromagnetic devices</title><author>Mohammed, O.A. ; Merchant, R. ; Uler, F.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Design optimization</topic><topic>Electromagnetic devices</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite element methods</topic><topic>Geometry</topic><topic>Intelligent systems</topic><topic>Neural networks</topic><topic>Simulated annealing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Merchant, R.</creatorcontrib><creatorcontrib>Uler, F.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, O.A.</au><au>Merchant, R.</au><au>Uler, F.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent system for design optimization of electromagnetic devices</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1994-09-01</date><risdate>1994</risdate><volume>30</volume><issue>5</issue><spage>3633</spage><epage>3636</epage><pages>3633-3636</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.312727</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3633-3636 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_312727 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Artificial neural networks Computer science control theory systems Connectionism. Neural networks Design optimization Electromagnetic devices Equations Exact sciences and technology Finite element methods Geometry Intelligent systems Neural networks Simulated annealing Testing |
title | An intelligent system for design optimization of electromagnetic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20system%20for%20design%20optimization%20of%20electromagnetic%20devices&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Mohammed,%20O.A.&rft.date=1994-09-01&rft.volume=30&rft.issue=5&rft.spage=3633&rft.epage=3636&rft.pages=3633-3636&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.312727&rft_dat=%3Cproquest_RIE%3E28457872%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28457872&rft_id=info:pmid/&rft_ieee_id=312727&rfr_iscdi=true |