An intelligent system for design optimization of electromagnetic devices

An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1994-09, Vol.30 (5), p.3633-3636
Hauptverfasser: Mohammed, O.A., Merchant, R., Uler, F.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3636
container_issue 5
container_start_page 3633
container_title IEEE transactions on magnetics
container_volume 30
creator Mohammed, O.A.
Merchant, R.
Uler, F.G.
description An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.< >
doi_str_mv 10.1109/20.312727
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_312727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>312727</ieee_id><sourcerecordid>28457872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKsHr572IIKHrfnO7rEUtULBi56XbHZSIrubmqRC_euNbNG5DI_5zePxELomeEEIrh8oXjBCFVUnaEZqTkqMZX2KZhiTqqy55OfoIsaPLLkgeIbWy7FwY4K-d1sYUxEPMcFQWB-KDqLbjoXfJTe4b52cz8IW0INJwQ96O0JyJmNfzkC8RGdW9xGujnuO3p8e31brcvP6_LJabkrDsEylNpi3uLa6s4qRtiWiq4ySRkrDqjyCYdVCa5mmvBWWCcloKwSThBNeK8Hm6G7y3QX_uYeYmsFFk_PrEfw-NrTiQlWKZvB-Ak3wMQawzS64QYdDQ3Dz21VDcTN1ldnbo6mORvc26NG4-PfAmGC5uozdTJgDgP_r5PEDPOBwaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28457872</pqid></control><display><type>article</type><title>An intelligent system for design optimization of electromagnetic devices</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, O.A. ; Merchant, R. ; Uler, F.G.</creator><creatorcontrib>Mohammed, O.A. ; Merchant, R. ; Uler, F.G.</creatorcontrib><description>An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.312727</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Computer science; control theory; systems ; Connectionism. Neural networks ; Design optimization ; Electromagnetic devices ; Equations ; Exact sciences and technology ; Finite element methods ; Geometry ; Intelligent systems ; Neural networks ; Simulated annealing ; Testing</subject><ispartof>IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3633-3636</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</citedby><cites>FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/312727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/312727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3353464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Merchant, R.</creatorcontrib><creatorcontrib>Uler, F.G.</creatorcontrib><title>An intelligent system for design optimization of electromagnetic devices</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Design optimization</subject><subject>Electromagnetic devices</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite element methods</subject><subject>Geometry</subject><subject>Intelligent systems</subject><subject>Neural networks</subject><subject>Simulated annealing</subject><subject>Testing</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKsHr572IIKHrfnO7rEUtULBi56XbHZSIrubmqRC_euNbNG5DI_5zePxELomeEEIrh8oXjBCFVUnaEZqTkqMZX2KZhiTqqy55OfoIsaPLLkgeIbWy7FwY4K-d1sYUxEPMcFQWB-KDqLbjoXfJTe4b52cz8IW0INJwQ96O0JyJmNfzkC8RGdW9xGujnuO3p8e31brcvP6_LJabkrDsEylNpi3uLa6s4qRtiWiq4ySRkrDqjyCYdVCa5mmvBWWCcloKwSThBNeK8Hm6G7y3QX_uYeYmsFFk_PrEfw-NrTiQlWKZvB-Ak3wMQawzS64QYdDQ3Dz21VDcTN1ldnbo6mORvc26NG4-PfAmGC5uozdTJgDgP_r5PEDPOBwaQ</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Mohammed, O.A.</creator><creator>Merchant, R.</creator><creator>Uler, F.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940901</creationdate><title>An intelligent system for design optimization of electromagnetic devices</title><author>Mohammed, O.A. ; Merchant, R. ; Uler, F.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ac04b09fadf731bb15d8c76c66c388885307bebf3a24b5f35632b553614149753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Design optimization</topic><topic>Electromagnetic devices</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite element methods</topic><topic>Geometry</topic><topic>Intelligent systems</topic><topic>Neural networks</topic><topic>Simulated annealing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Merchant, R.</creatorcontrib><creatorcontrib>Uler, F.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, O.A.</au><au>Merchant, R.</au><au>Uler, F.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent system for design optimization of electromagnetic devices</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1994-09-01</date><risdate>1994</risdate><volume>30</volume><issue>5</issue><spage>3633</spage><epage>3636</epage><pages>3633-3636</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>An intelligent system for the design optimization of electromagnetic devices is presented. The system comprises a back-propagation neural network in conjunction with an optimizing Hopfield Net for performing search and optimization functions. An adaptive algorithm is used to improve the response of the system in a dynamic environment. Data can be input by an experienced designer in addition to a case generator from the finite element (FE) solutions. Optimal designs are obtained quickly once the artificial neural network (ANN) is trained with a variety of topologies. Results of implemented examples are provided to show the effectiveness of the proposed system.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.312727</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3633-3636
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_312727
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Artificial neural networks
Computer science
control theory
systems
Connectionism. Neural networks
Design optimization
Electromagnetic devices
Equations
Exact sciences and technology
Finite element methods
Geometry
Intelligent systems
Neural networks
Simulated annealing
Testing
title An intelligent system for design optimization of electromagnetic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20system%20for%20design%20optimization%20of%20electromagnetic%20devices&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Mohammed,%20O.A.&rft.date=1994-09-01&rft.volume=30&rft.issue=5&rft.spage=3633&rft.epage=3636&rft.pages=3633-3636&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.312727&rft_dat=%3Cproquest_RIE%3E28457872%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28457872&rft_id=info:pmid/&rft_ieee_id=312727&rfr_iscdi=true