Error estimates for Yee's method on non-uniform grids
In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1994-09, Vol.30 (5), p.3200-3203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3203 |
---|---|
container_issue | 5 |
container_start_page | 3200 |
container_title | IEEE transactions on magnetics |
container_volume | 30 |
creator | Monk, P. Suli, E. |
description | In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.< > |
doi_str_mv | 10.1109/20.312618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_312618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>312618</ieee_id><sourcerecordid>28557340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYMouK4evHrqQRQPXTNN0maOsqwfsOBFD55Ctp1opW3WpHvwvzfSRWFgGN5vHjOPsXPgCwCOtwVfCChK0AdsBigh57zEQzbjHHSOspTH7CTGzzRKBXzG1CoEHzKKY9vbkWLm0vRGdB2znsYP32R-yAY_5LuhTVKfvYe2iafsyNku0tm-z9nr_epl-Zivnx-elnfrvC4KGHMQipAUaoVCoKysAFVJKwSXWAMKJxxK2eiNK5EkgLMIVaNRa66I40bM2dXkuw3-a5eONH0ba-o6O5DfRVNopSoheQJvJrAOPsZAzmxDeih8G-DmNxhTcDMFk9jLvamNte1csEPdxr8FIVSqMmEXE9YS0b86efwAoE5nZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28557340</pqid></control><display><type>article</type><title>Error estimates for Yee's method on non-uniform grids</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Monk, P. ; Suli, E.</creator><creatorcontrib>Monk, P. ; Suli, E.</creatorcontrib><description>In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.< ></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.312618</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary conditions ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Convergence ; Dielectrics ; Error analysis ; Exact sciences and technology ; Finite difference methods ; Finite wordlength effects ; Grid computing ; Laboratories ; Magnetic fields ; Physics ; Time domain analysis</subject><ispartof>IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3200-3203</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</citedby><cites>FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/312618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23921,23922,25131,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/312618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3353356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Monk, P.</creatorcontrib><creatorcontrib>Suli, E.</creatorcontrib><title>Error estimates for Yee's method on non-uniform grids</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.< ></description><subject>Boundary conditions</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Convergence</subject><subject>Dielectrics</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite wordlength effects</subject><subject>Grid computing</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Time domain analysis</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAQxYMouK4evHrqQRQPXTNN0maOsqwfsOBFD55Ctp1opW3WpHvwvzfSRWFgGN5vHjOPsXPgCwCOtwVfCChK0AdsBigh57zEQzbjHHSOspTH7CTGzzRKBXzG1CoEHzKKY9vbkWLm0vRGdB2znsYP32R-yAY_5LuhTVKfvYe2iafsyNku0tm-z9nr_epl-Zivnx-elnfrvC4KGHMQipAUaoVCoKysAFVJKwSXWAMKJxxK2eiNK5EkgLMIVaNRa66I40bM2dXkuw3-a5eONH0ba-o6O5DfRVNopSoheQJvJrAOPsZAzmxDeih8G-DmNxhTcDMFk9jLvamNte1csEPdxr8FIVSqMmEXE9YS0b86efwAoE5nZg</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Monk, P.</creator><creator>Suli, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940901</creationdate><title>Error estimates for Yee's method on non-uniform grids</title><author>Monk, P. ; Suli, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Boundary conditions</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Convergence</topic><topic>Dielectrics</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite wordlength effects</topic><topic>Grid computing</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Monk, P.</creatorcontrib><creatorcontrib>Suli, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monk, P.</au><au>Suli, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimates for Yee's method on non-uniform grids</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1994-09-01</date><risdate>1994</risdate><volume>30</volume><issue>5</issue><spage>3200</spage><epage>3203</epage><pages>3200-3203</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.312618</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3200-3203 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_312618 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Boundary conditions Classical and quantum physics: mechanics and fields Classical electromagnetism, maxwell equations Classical field theories Convergence Dielectrics Error analysis Exact sciences and technology Finite difference methods Finite wordlength effects Grid computing Laboratories Magnetic fields Physics Time domain analysis |
title | Error estimates for Yee's method on non-uniform grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimates%20for%20Yee's%20method%20on%20non-uniform%20grids&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Monk,%20P.&rft.date=1994-09-01&rft.volume=30&rft.issue=5&rft.spage=3200&rft.epage=3203&rft.pages=3200-3203&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.312618&rft_dat=%3Cproquest_RIE%3E28557340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28557340&rft_id=info:pmid/&rft_ieee_id=312618&rfr_iscdi=true |