Error estimates for Yee's method on non-uniform grids

In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1994-09, Vol.30 (5), p.3200-3203
Hauptverfasser: Monk, P., Suli, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3203
container_issue 5
container_start_page 3200
container_title IEEE transactions on magnetics
container_volume 30
creator Monk, P.
Suli, E.
description In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.< >
doi_str_mv 10.1109/20.312618
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_312618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>312618</ieee_id><sourcerecordid>28557340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYMouK4evHrqQRQPXTNN0maOsqwfsOBFD55Ctp1opW3WpHvwvzfSRWFgGN5vHjOPsXPgCwCOtwVfCChK0AdsBigh57zEQzbjHHSOspTH7CTGzzRKBXzG1CoEHzKKY9vbkWLm0vRGdB2znsYP32R-yAY_5LuhTVKfvYe2iafsyNku0tm-z9nr_epl-Zivnx-elnfrvC4KGHMQipAUaoVCoKysAFVJKwSXWAMKJxxK2eiNK5EkgLMIVaNRa66I40bM2dXkuw3-a5eONH0ba-o6O5DfRVNopSoheQJvJrAOPsZAzmxDeih8G-DmNxhTcDMFk9jLvamNte1csEPdxr8FIVSqMmEXE9YS0b86efwAoE5nZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28557340</pqid></control><display><type>article</type><title>Error estimates for Yee's method on non-uniform grids</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Monk, P. ; Suli, E.</creator><creatorcontrib>Monk, P. ; Suli, E.</creatorcontrib><description>In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.312618</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary conditions ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Convergence ; Dielectrics ; Error analysis ; Exact sciences and technology ; Finite difference methods ; Finite wordlength effects ; Grid computing ; Laboratories ; Magnetic fields ; Physics ; Time domain analysis</subject><ispartof>IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3200-3203</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</citedby><cites>FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/312618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23921,23922,25131,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/312618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3353356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Monk, P.</creatorcontrib><creatorcontrib>Suli, E.</creatorcontrib><title>Error estimates for Yee's method on non-uniform grids</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.&lt; &gt;</description><subject>Boundary conditions</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Convergence</subject><subject>Dielectrics</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite wordlength effects</subject><subject>Grid computing</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Time domain analysis</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAQxYMouK4evHrqQRQPXTNN0maOsqwfsOBFD55Ctp1opW3WpHvwvzfSRWFgGN5vHjOPsXPgCwCOtwVfCChK0AdsBigh57zEQzbjHHSOspTH7CTGzzRKBXzG1CoEHzKKY9vbkWLm0vRGdB2znsYP32R-yAY_5LuhTVKfvYe2iafsyNku0tm-z9nr_epl-Zivnx-elnfrvC4KGHMQipAUaoVCoKysAFVJKwSXWAMKJxxK2eiNK5EkgLMIVaNRa66I40bM2dXkuw3-a5eONH0ba-o6O5DfRVNopSoheQJvJrAOPsZAzmxDeih8G-DmNxhTcDMFk9jLvamNte1csEPdxr8FIVSqMmEXE9YS0b86efwAoE5nZg</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Monk, P.</creator><creator>Suli, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940901</creationdate><title>Error estimates for Yee's method on non-uniform grids</title><author>Monk, P. ; Suli, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-135e9e5985933947a31574a33049c193f3f944d8bf69e411fa917d898805e09b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Boundary conditions</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Convergence</topic><topic>Dielectrics</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite wordlength effects</topic><topic>Grid computing</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Monk, P.</creatorcontrib><creatorcontrib>Suli, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monk, P.</au><au>Suli, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimates for Yee's method on non-uniform grids</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1994-09-01</date><risdate>1994</risdate><volume>30</volume><issue>5</issue><spage>3200</spage><epage>3203</epage><pages>3200-3203</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this paper we analyze the order of convergence of Yee's finite difference time domain method on non-uniform, but rectangular, grids. A simple analysis shows that the local truncation error is only first order, yet numerical experiments show that the method is always second order convergent. However, by analyzing the error in more detail, we are able to prove supra-convergence and show that the method is second order convergent regardless of the non-uniformity in the mesh.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.312618</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1994-09, Vol.30 (5), p.3200-3203
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_312618
source IEEE/IET Electronic Library (IEL)
subjects Boundary conditions
Classical and quantum physics: mechanics and fields
Classical electromagnetism, maxwell equations
Classical field theories
Convergence
Dielectrics
Error analysis
Exact sciences and technology
Finite difference methods
Finite wordlength effects
Grid computing
Laboratories
Magnetic fields
Physics
Time domain analysis
title Error estimates for Yee's method on non-uniform grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimates%20for%20Yee's%20method%20on%20non-uniform%20grids&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Monk,%20P.&rft.date=1994-09-01&rft.volume=30&rft.issue=5&rft.spage=3200&rft.epage=3203&rft.pages=3200-3203&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.312618&rft_dat=%3Cproquest_RIE%3E28557340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28557340&rft_id=info:pmid/&rft_ieee_id=312618&rfr_iscdi=true