Hopfield-based adaptive state estimators

Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shoureshi, R., Chu, S.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1294 vol.3
container_issue
container_start_page 1289
container_title
container_volume
creator Shoureshi, R.
Chu, S.R.
description Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.< >
doi_str_mv 10.1109/ICNN.1993.298743
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_298743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>298743</ieee_id><sourcerecordid>298743</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-8dc32267f632a58de1f4c569a2af12f1298d2dd313f2392eb72a48122e7f19893</originalsourceid><addsrcrecordid>eNotj0FLw0AQhRdEUGvv4ilHL0l3ZjbJzlGC2kKpFz2XaXcWVioN2UXw3xuojw_e7Xs8Yx7ANgCWV5tht2uAmRpk3zu6Mne295YsM7c3Zpnzl53jWrAOb83T-jzGpKdQHyRrqCTIWNKPVrlI0UpzSd9SzlO-N9dRTlmX_70wn68vH8O63r6_bYbnbZ1mYal9OBJi18eOUFofFKI7th0LSgScYR8wBAKKSIx66FGcB0TtI7BnWpjHizep6n6c5vnpd3_5Qn_ymj4F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hopfield-based adaptive state estimators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shoureshi, R. ; Chu, S.R.</creator><creatorcontrib>Shoureshi, R. ; Chu, S.R.</creatorcontrib><description>Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.&lt; &gt;</description><identifier>ISBN: 0780309995</identifier><identifier>ISBN: 9780780309999</identifier><identifier>DOI: 10.1109/ICNN.1993.298743</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Filters ; Hopfield neural networks ; Intelligent networks ; Linear systems ; Mechanical engineering ; Neurons ; Observers ; State estimation ; System identification</subject><ispartof>IEEE International Conference on Neural Networks, 1993, p.1289-1294 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/298743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/298743$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shoureshi, R.</creatorcontrib><creatorcontrib>Chu, S.R.</creatorcontrib><title>Hopfield-based adaptive state estimators</title><title>IEEE International Conference on Neural Networks</title><addtitle>ICNN</addtitle><description>Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.&lt; &gt;</description><subject>Equations</subject><subject>Filters</subject><subject>Hopfield neural networks</subject><subject>Intelligent networks</subject><subject>Linear systems</subject><subject>Mechanical engineering</subject><subject>Neurons</subject><subject>Observers</subject><subject>State estimation</subject><subject>System identification</subject><isbn>0780309995</isbn><isbn>9780780309999</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLw0AQhRdEUGvv4ilHL0l3ZjbJzlGC2kKpFz2XaXcWVioN2UXw3xuojw_e7Xs8Yx7ANgCWV5tht2uAmRpk3zu6Mne295YsM7c3Zpnzl53jWrAOb83T-jzGpKdQHyRrqCTIWNKPVrlI0UpzSd9SzlO-N9dRTlmX_70wn68vH8O63r6_bYbnbZ1mYal9OBJi18eOUFofFKI7th0LSgScYR8wBAKKSIx66FGcB0TtI7BnWpjHizep6n6c5vnpd3_5Qn_ymj4F</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Shoureshi, R.</creator><creator>Chu, S.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1993</creationdate><title>Hopfield-based adaptive state estimators</title><author>Shoureshi, R. ; Chu, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-8dc32267f632a58de1f4c569a2af12f1298d2dd313f2392eb72a48122e7f19893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Equations</topic><topic>Filters</topic><topic>Hopfield neural networks</topic><topic>Intelligent networks</topic><topic>Linear systems</topic><topic>Mechanical engineering</topic><topic>Neurons</topic><topic>Observers</topic><topic>State estimation</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Shoureshi, R.</creatorcontrib><creatorcontrib>Chu, S.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shoureshi, R.</au><au>Chu, S.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hopfield-based adaptive state estimators</atitle><btitle>IEEE International Conference on Neural Networks</btitle><stitle>ICNN</stitle><date>1993</date><risdate>1993</risdate><spage>1289</spage><epage>1294 vol.3</epage><pages>1289-1294 vol.3</pages><isbn>0780309995</isbn><isbn>9780780309999</isbn><abstract>Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1993.298743</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780309995
ispartof IEEE International Conference on Neural Networks, 1993, p.1289-1294 vol.3
issn
language eng
recordid cdi_ieee_primary_298743
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Filters
Hopfield neural networks
Intelligent networks
Linear systems
Mechanical engineering
Neurons
Observers
State estimation
System identification
title Hopfield-based adaptive state estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hopfield-based%20adaptive%20state%20estimators&rft.btitle=IEEE%20International%20Conference%20on%20Neural%20Networks&rft.au=Shoureshi,%20R.&rft.date=1993&rft.spage=1289&rft.epage=1294%20vol.3&rft.pages=1289-1294%20vol.3&rft.isbn=0780309995&rft.isbn_list=9780780309999&rft_id=info:doi/10.1109/ICNN.1993.298743&rft_dat=%3Cieee_6IE%3E298743%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=298743&rfr_iscdi=true