Hopfield-based adaptive state estimators
Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identificati...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1294 vol.3 |
---|---|
container_issue | |
container_start_page | 1289 |
container_title | |
container_volume | |
creator | Shoureshi, R. Chu, S.R. |
description | Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.< > |
doi_str_mv | 10.1109/ICNN.1993.298743 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_298743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>298743</ieee_id><sourcerecordid>298743</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-8dc32267f632a58de1f4c569a2af12f1298d2dd313f2392eb72a48122e7f19893</originalsourceid><addsrcrecordid>eNotj0FLw0AQhRdEUGvv4ilHL0l3ZjbJzlGC2kKpFz2XaXcWVioN2UXw3xuojw_e7Xs8Yx7ANgCWV5tht2uAmRpk3zu6Mne295YsM7c3Zpnzl53jWrAOb83T-jzGpKdQHyRrqCTIWNKPVrlI0UpzSd9SzlO-N9dRTlmX_70wn68vH8O63r6_bYbnbZ1mYal9OBJi18eOUFofFKI7th0LSgScYR8wBAKKSIx66FGcB0TtI7BnWpjHizep6n6c5vnpd3_5Qn_ymj4F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hopfield-based adaptive state estimators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shoureshi, R. ; Chu, S.R.</creator><creatorcontrib>Shoureshi, R. ; Chu, S.R.</creatorcontrib><description>Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.< ></description><identifier>ISBN: 0780309995</identifier><identifier>ISBN: 9780780309999</identifier><identifier>DOI: 10.1109/ICNN.1993.298743</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Filters ; Hopfield neural networks ; Intelligent networks ; Linear systems ; Mechanical engineering ; Neurons ; Observers ; State estimation ; System identification</subject><ispartof>IEEE International Conference on Neural Networks, 1993, p.1289-1294 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/298743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/298743$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shoureshi, R.</creatorcontrib><creatorcontrib>Chu, S.R.</creatorcontrib><title>Hopfield-based adaptive state estimators</title><title>IEEE International Conference on Neural Networks</title><addtitle>ICNN</addtitle><description>Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.< ></description><subject>Equations</subject><subject>Filters</subject><subject>Hopfield neural networks</subject><subject>Intelligent networks</subject><subject>Linear systems</subject><subject>Mechanical engineering</subject><subject>Neurons</subject><subject>Observers</subject><subject>State estimation</subject><subject>System identification</subject><isbn>0780309995</isbn><isbn>9780780309999</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLw0AQhRdEUGvv4ilHL0l3ZjbJzlGC2kKpFz2XaXcWVioN2UXw3xuojw_e7Xs8Yx7ANgCWV5tht2uAmRpk3zu6Mne295YsM7c3Zpnzl53jWrAOb83T-jzGpKdQHyRrqCTIWNKPVrlI0UpzSd9SzlO-N9dRTlmX_70wn68vH8O63r6_bYbnbZ1mYal9OBJi18eOUFofFKI7th0LSgScYR8wBAKKSIx66FGcB0TtI7BnWpjHizep6n6c5vnpd3_5Qn_ymj4F</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Shoureshi, R.</creator><creator>Chu, S.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1993</creationdate><title>Hopfield-based adaptive state estimators</title><author>Shoureshi, R. ; Chu, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-8dc32267f632a58de1f4c569a2af12f1298d2dd313f2392eb72a48122e7f19893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Equations</topic><topic>Filters</topic><topic>Hopfield neural networks</topic><topic>Intelligent networks</topic><topic>Linear systems</topic><topic>Mechanical engineering</topic><topic>Neurons</topic><topic>Observers</topic><topic>State estimation</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Shoureshi, R.</creatorcontrib><creatorcontrib>Chu, S.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shoureshi, R.</au><au>Chu, S.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hopfield-based adaptive state estimators</atitle><btitle>IEEE International Conference on Neural Networks</btitle><stitle>ICNN</stitle><date>1993</date><risdate>1993</risdate><spage>1289</spage><epage>1294 vol.3</epage><pages>1289-1294 vol.3</pages><isbn>0780309995</isbn><isbn>9780780309999</isbn><abstract>Hopfield networks have been applied to the problem of system identification. Luenberger observers have long been used for estimation of unmeasurable states of linear systems. The mathematical derivation of an adaptive observer based on integration of the two techniques is presented. The identification of unknown multiple input multiple output (MIMO) systems with noise corrupted measurements is described. Simulation results for different plant conditions are detailed.< ></abstract><pub>IEEE</pub><doi>10.1109/ICNN.1993.298743</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780309995 |
ispartof | IEEE International Conference on Neural Networks, 1993, p.1289-1294 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_298743 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations Filters Hopfield neural networks Intelligent networks Linear systems Mechanical engineering Neurons Observers State estimation System identification |
title | Hopfield-based adaptive state estimators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hopfield-based%20adaptive%20state%20estimators&rft.btitle=IEEE%20International%20Conference%20on%20Neural%20Networks&rft.au=Shoureshi,%20R.&rft.date=1993&rft.spage=1289&rft.epage=1294%20vol.3&rft.pages=1289-1294%20vol.3&rft.isbn=0780309995&rft.isbn_list=9780780309999&rft_id=info:doi/10.1109/ICNN.1993.298743&rft_dat=%3Cieee_6IE%3E298743%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=298743&rfr_iscdi=true |