Precision SAR processing using chirp scaling
A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 1994-07, Vol.32 (4), p.786-799 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 4 |
container_start_page | 786 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 32 |
creator | Raney, R.K. Runge, H. Bamler, R. Cumming, I.G. Wong, F.H. |
description | A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.< > |
doi_str_mv | 10.1109/36.298008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_298008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>298008</ieee_id><sourcerecordid>26493101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</originalsourceid><addsrcrecordid>eNqNkMtLw0AQxhdRsFYPXj3lIIJg6r4fx1J8QUHxcV42m4mupEndbQ7-9yam9KqXGYb5zcc3H0KnBM8IweaayRk1GmO9hyZECJ1jyfk-mmBiZE61oYfoKKVPjAkXRE3Q1VMEH1Jom-xl_pytY-shpdC8Z91v9R8hrrPkXd1Px-igcnWCk22forfbm9fFfb58vHtYzJe554xvcqOdrypGGUjQShaCalUUvvBlSSiAw6XwTJVYF6UGxalRgla9QcGl5qKkbIouRt3ezlcHaWNXIXmoa9dA2yXb_2EMN-IfoKAGM_I3KLlhBA_g5Qj62KYUobLrGFYufluC7ZCwZdKOCffs-VbUDQFV0TV9lLsDTjSlavjmbMQCAOy2W40fuI-AsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26493101</pqid></control><display><type>article</type><title>Precision SAR processing using chirp scaling</title><source>IEEE Electronic Library (IEL)</source><creator>Raney, R.K. ; Runge, H. ; Bamler, R. ; Cumming, I.G. ; Wong, F.H.</creator><creatorcontrib>Raney, R.K. ; Runge, H. ; Bamler, R. ; Cumming, I.G. ; Wong, F.H.</creatorcontrib><description>A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.< ></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.298008</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Areal geology. Maps ; Chirp ; Earth sciences ; Earth, ocean, space ; Energy resolution ; Exact sciences and technology ; External geophysics ; Fourier transforms ; Frequency domain analysis ; Geologic maps, cartography ; Geophysics. Techniques, methods, instrumentation and models ; Image quality ; Interpolation ; Signal processing ; Signal resolution ; Synthetic aperture radar ; System testing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 1994-07, Vol.32 (4), p.786-799</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</citedby><cites>FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/298008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/298008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4182272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Raney, R.K.</creatorcontrib><creatorcontrib>Runge, H.</creatorcontrib><creatorcontrib>Bamler, R.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Wong, F.H.</creatorcontrib><title>Precision SAR processing using chirp scaling</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.< ></description><subject>Areal geology. Maps</subject><subject>Chirp</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fourier transforms</subject><subject>Frequency domain analysis</subject><subject>Geologic maps, cartography</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Image quality</subject><subject>Interpolation</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Synthetic aperture radar</subject><subject>System testing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkMtLw0AQxhdRsFYPXj3lIIJg6r4fx1J8QUHxcV42m4mupEndbQ7-9yam9KqXGYb5zcc3H0KnBM8IweaayRk1GmO9hyZECJ1jyfk-mmBiZE61oYfoKKVPjAkXRE3Q1VMEH1Jom-xl_pytY-shpdC8Z91v9R8hrrPkXd1Px-igcnWCk22forfbm9fFfb58vHtYzJe554xvcqOdrypGGUjQShaCalUUvvBlSSiAw6XwTJVYF6UGxalRgla9QcGl5qKkbIouRt3ezlcHaWNXIXmoa9dA2yXb_2EMN-IfoKAGM_I3KLlhBA_g5Qj62KYUobLrGFYufluC7ZCwZdKOCffs-VbUDQFV0TV9lLsDTjSlavjmbMQCAOy2W40fuI-AsQ</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Raney, R.K.</creator><creator>Runge, H.</creator><creator>Bamler, R.</creator><creator>Cumming, I.G.</creator><creator>Wong, F.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19940701</creationdate><title>Precision SAR processing using chirp scaling</title><author>Raney, R.K. ; Runge, H. ; Bamler, R. ; Cumming, I.G. ; Wong, F.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Areal geology. Maps</topic><topic>Chirp</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fourier transforms</topic><topic>Frequency domain analysis</topic><topic>Geologic maps, cartography</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Image quality</topic><topic>Interpolation</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Synthetic aperture radar</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raney, R.K.</creatorcontrib><creatorcontrib>Runge, H.</creatorcontrib><creatorcontrib>Bamler, R.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Wong, F.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raney, R.K.</au><au>Runge, H.</au><au>Bamler, R.</au><au>Cumming, I.G.</au><au>Wong, F.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision SAR processing using chirp scaling</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>32</volume><issue>4</issue><spage>786</spage><epage>799</epage><pages>786-799</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.298008</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 1994-07, Vol.32 (4), p.786-799 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_298008 |
source | IEEE Electronic Library (IEL) |
subjects | Areal geology. Maps Chirp Earth sciences Earth, ocean, space Energy resolution Exact sciences and technology External geophysics Fourier transforms Frequency domain analysis Geologic maps, cartography Geophysics. Techniques, methods, instrumentation and models Image quality Interpolation Signal processing Signal resolution Synthetic aperture radar System testing |
title | Precision SAR processing using chirp scaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20SAR%20processing%20using%20chirp%20scaling&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Raney,%20R.K.&rft.date=1994-07-01&rft.volume=32&rft.issue=4&rft.spage=786&rft.epage=799&rft.pages=786-799&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.298008&rft_dat=%3Cproquest_RIE%3E26493101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26493101&rft_id=info:pmid/&rft_ieee_id=298008&rfr_iscdi=true |