Precision SAR processing using chirp scaling

A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 1994-07, Vol.32 (4), p.786-799
Hauptverfasser: Raney, R.K., Runge, H., Bamler, R., Cumming, I.G., Wong, F.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 799
container_issue 4
container_start_page 786
container_title IEEE transactions on geoscience and remote sensing
container_volume 32
creator Raney, R.K.
Runge, H.
Bamler, R.
Cumming, I.G.
Wong, F.H.
description A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.< >
doi_str_mv 10.1109/36.298008
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_298008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>298008</ieee_id><sourcerecordid>26493101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</originalsourceid><addsrcrecordid>eNqNkMtLw0AQxhdRsFYPXj3lIIJg6r4fx1J8QUHxcV42m4mupEndbQ7-9yam9KqXGYb5zcc3H0KnBM8IweaayRk1GmO9hyZECJ1jyfk-mmBiZE61oYfoKKVPjAkXRE3Q1VMEH1Jom-xl_pytY-shpdC8Z91v9R8hrrPkXd1Px-igcnWCk22forfbm9fFfb58vHtYzJe554xvcqOdrypGGUjQShaCalUUvvBlSSiAw6XwTJVYF6UGxalRgla9QcGl5qKkbIouRt3ezlcHaWNXIXmoa9dA2yXb_2EMN-IfoKAGM_I3KLlhBA_g5Qj62KYUobLrGFYufluC7ZCwZdKOCffs-VbUDQFV0TV9lLsDTjSlavjmbMQCAOy2W40fuI-AsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26493101</pqid></control><display><type>article</type><title>Precision SAR processing using chirp scaling</title><source>IEEE Electronic Library (IEL)</source><creator>Raney, R.K. ; Runge, H. ; Bamler, R. ; Cumming, I.G. ; Wong, F.H.</creator><creatorcontrib>Raney, R.K. ; Runge, H. ; Bamler, R. ; Cumming, I.G. ; Wong, F.H.</creatorcontrib><description>A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.&lt; &gt;</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.298008</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Areal geology. Maps ; Chirp ; Earth sciences ; Earth, ocean, space ; Energy resolution ; Exact sciences and technology ; External geophysics ; Fourier transforms ; Frequency domain analysis ; Geologic maps, cartography ; Geophysics. Techniques, methods, instrumentation and models ; Image quality ; Interpolation ; Signal processing ; Signal resolution ; Synthetic aperture radar ; System testing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 1994-07, Vol.32 (4), p.786-799</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</citedby><cites>FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/298008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/298008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4182272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Raney, R.K.</creatorcontrib><creatorcontrib>Runge, H.</creatorcontrib><creatorcontrib>Bamler, R.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Wong, F.H.</creatorcontrib><title>Precision SAR processing using chirp scaling</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.&lt; &gt;</description><subject>Areal geology. Maps</subject><subject>Chirp</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fourier transforms</subject><subject>Frequency domain analysis</subject><subject>Geologic maps, cartography</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Image quality</subject><subject>Interpolation</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Synthetic aperture radar</subject><subject>System testing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkMtLw0AQxhdRsFYPXj3lIIJg6r4fx1J8QUHxcV42m4mupEndbQ7-9yam9KqXGYb5zcc3H0KnBM8IweaayRk1GmO9hyZECJ1jyfk-mmBiZE61oYfoKKVPjAkXRE3Q1VMEH1Jom-xl_pytY-shpdC8Z91v9R8hrrPkXd1Px-igcnWCk22forfbm9fFfb58vHtYzJe554xvcqOdrypGGUjQShaCalUUvvBlSSiAw6XwTJVYF6UGxalRgla9QcGl5qKkbIouRt3ezlcHaWNXIXmoa9dA2yXb_2EMN-IfoKAGM_I3KLlhBA_g5Qj62KYUobLrGFYufluC7ZCwZdKOCffs-VbUDQFV0TV9lLsDTjSlavjmbMQCAOy2W40fuI-AsQ</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Raney, R.K.</creator><creator>Runge, H.</creator><creator>Bamler, R.</creator><creator>Cumming, I.G.</creator><creator>Wong, F.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19940701</creationdate><title>Precision SAR processing using chirp scaling</title><author>Raney, R.K. ; Runge, H. ; Bamler, R. ; Cumming, I.G. ; Wong, F.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-98acff323e6e876b5287bbcbcdd12eea0d5c37d08bd8e7429752f019546845d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Areal geology. Maps</topic><topic>Chirp</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fourier transforms</topic><topic>Frequency domain analysis</topic><topic>Geologic maps, cartography</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Image quality</topic><topic>Interpolation</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Synthetic aperture radar</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raney, R.K.</creatorcontrib><creatorcontrib>Runge, H.</creatorcontrib><creatorcontrib>Bamler, R.</creatorcontrib><creatorcontrib>Cumming, I.G.</creatorcontrib><creatorcontrib>Wong, F.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raney, R.K.</au><au>Runge, H.</au><au>Bamler, R.</au><au>Cumming, I.G.</au><au>Wong, F.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision SAR processing using chirp scaling</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>32</volume><issue>4</issue><spage>786</spage><epage>799</epage><pages>786-799</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A space-variant interpolation is required to compensate for the migration of signal energy through range resolution cells when processing synthetic aperture radar (SAR) data, using either the classical range/Doppler (R/D) algorithm or related frequency domain techniques. In general, interpolation requires significant computation time, and leads to loss of image quality, especially in the complex image. The new chirp scaling algorithm avoids interpolation, yet performs range cell migration correction accurately. The algorithm requires only complex multiplies and Fourier transforms to implement, is inherently phase preserving, and is suitable for wide-swath, large-beamwidth, and large-squint applications. This paper describes the chirp scaling algorithm, summarizes simulation results, presents imagery processed with the algorithm, and reviews quantitative measures of its performance. Based on quantitative comparison, the chirp scaling algorithm provides image quality equal to or better than the precision range/Doppler processor. Over the range of parameters tested, image quality results approach the theoretical limit, as defined by the system bandwidth.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.298008</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 1994-07, Vol.32 (4), p.786-799
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_298008
source IEEE Electronic Library (IEL)
subjects Areal geology. Maps
Chirp
Earth sciences
Earth, ocean, space
Energy resolution
Exact sciences and technology
External geophysics
Fourier transforms
Frequency domain analysis
Geologic maps, cartography
Geophysics. Techniques, methods, instrumentation and models
Image quality
Interpolation
Signal processing
Signal resolution
Synthetic aperture radar
System testing
title Precision SAR processing using chirp scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20SAR%20processing%20using%20chirp%20scaling&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Raney,%20R.K.&rft.date=1994-07-01&rft.volume=32&rft.issue=4&rft.spage=786&rft.epage=799&rft.pages=786-799&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.298008&rft_dat=%3Cproquest_RIE%3E26493101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26493101&rft_id=info:pmid/&rft_ieee_id=298008&rfr_iscdi=true