Bayesian classification of multivariate image after MAP reconstruction of noisy channels

Presents a supervised Bayesian classifier that makes use of both spectral signatures and spatial interactions after the preprocessing of clean noisy channels. The authors apply the Markov random field model at both preprocessing and classification stages. They perform the optimization using either c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yonhong Jhung, Swain, P.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue
container_start_page 422
container_title
container_volume
creator Yonhong Jhung
Swain, P.H.
description Presents a supervised Bayesian classifier that makes use of both spectral signatures and spatial interactions after the preprocessing of clean noisy channels. The authors apply the Markov random field model at both preprocessing and classification stages. They perform the optimization using either coordinate descent or iterated conditional mode. The estimation of filter parameters is accomplished by referring to adjacent channels that have higher signal-to-noise ratio.< >
doi_str_mv 10.1109/SSST.1994.287840
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_287840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>287840</ieee_id><sourcerecordid>287840</sourcerecordid><originalsourceid>FETCH-ieee_primary_2878403</originalsourceid><addsrcrecordid>eNp9js1KAzEURi_VgqN2X1zlBWa8yfw0WapY3AjCdOGuXMIdvTLNlCQV5u0V1K2rb3EOhw9grbHSGt1t3_e7SjvXVMZubIMLKIzudGl13Z7Bym0sWm27tjbozqFAdE1prLMXcJnSByJ2nWkLeL2nmZNQUH6klGQQT1mmoKZBHU5jlk-KQpmVHOiNFQ2Zo3q-e1GR_RRSjif_p4dJ0qz8O4XAY7qG5UBj4tXvXsHN9nH38FQKM--P8bsX5_3P9_pf-AViukWt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian classification of multivariate image after MAP reconstruction of noisy channels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yonhong Jhung ; Swain, P.H.</creator><creatorcontrib>Yonhong Jhung ; Swain, P.H.</creatorcontrib><description>Presents a supervised Bayesian classifier that makes use of both spectral signatures and spatial interactions after the preprocessing of clean noisy channels. The authors apply the Markov random field model at both preprocessing and classification stages. They perform the optimization using either coordinate descent or iterated conditional mode. The estimation of filter parameters is accomplished by referring to adjacent channels that have higher signal-to-noise ratio.&lt; &gt;</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 9780818653209</identifier><identifier>ISBN: 0818653205</identifier><identifier>EISSN: 2161-8135</identifier><identifier>DOI: 10.1109/SSST.1994.287840</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Cleaning ; Filters ; Image reconstruction ; Markov random fields ; Parameter estimation ; Remote sensing ; Signal to noise ratio ; Stochastic processes ; Working environment noise</subject><ispartof>Proceedings of 26th Southeastern Symposium on System Theory, 1994, p.422-426</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/287840$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/287840$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yonhong Jhung</creatorcontrib><creatorcontrib>Swain, P.H.</creatorcontrib><title>Bayesian classification of multivariate image after MAP reconstruction of noisy channels</title><title>Proceedings of 26th Southeastern Symposium on System Theory</title><addtitle>SSST</addtitle><description>Presents a supervised Bayesian classifier that makes use of both spectral signatures and spatial interactions after the preprocessing of clean noisy channels. The authors apply the Markov random field model at both preprocessing and classification stages. They perform the optimization using either coordinate descent or iterated conditional mode. The estimation of filter parameters is accomplished by referring to adjacent channels that have higher signal-to-noise ratio.&lt; &gt;</description><subject>Bayesian methods</subject><subject>Cleaning</subject><subject>Filters</subject><subject>Image reconstruction</subject><subject>Markov random fields</subject><subject>Parameter estimation</subject><subject>Remote sensing</subject><subject>Signal to noise ratio</subject><subject>Stochastic processes</subject><subject>Working environment noise</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>9780818653209</isbn><isbn>0818653205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9js1KAzEURi_VgqN2X1zlBWa8yfw0WapY3AjCdOGuXMIdvTLNlCQV5u0V1K2rb3EOhw9grbHSGt1t3_e7SjvXVMZubIMLKIzudGl13Z7Bym0sWm27tjbozqFAdE1prLMXcJnSByJ2nWkLeL2nmZNQUH6klGQQT1mmoKZBHU5jlk-KQpmVHOiNFQ2Zo3q-e1GR_RRSjif_p4dJ0qz8O4XAY7qG5UBj4tXvXsHN9nH38FQKM--P8bsX5_3P9_pf-AViukWt</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Yonhong Jhung</creator><creator>Swain, P.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Bayesian classification of multivariate image after MAP reconstruction of noisy channels</title><author>Yonhong Jhung ; Swain, P.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_2878403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bayesian methods</topic><topic>Cleaning</topic><topic>Filters</topic><topic>Image reconstruction</topic><topic>Markov random fields</topic><topic>Parameter estimation</topic><topic>Remote sensing</topic><topic>Signal to noise ratio</topic><topic>Stochastic processes</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Yonhong Jhung</creatorcontrib><creatorcontrib>Swain, P.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yonhong Jhung</au><au>Swain, P.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian classification of multivariate image after MAP reconstruction of noisy channels</atitle><btitle>Proceedings of 26th Southeastern Symposium on System Theory</btitle><stitle>SSST</stitle><date>1994</date><risdate>1994</risdate><spage>422</spage><epage>426</epage><pages>422-426</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>9780818653209</isbn><isbn>0818653205</isbn><abstract>Presents a supervised Bayesian classifier that makes use of both spectral signatures and spatial interactions after the preprocessing of clean noisy channels. The authors apply the Markov random field model at both preprocessing and classification stages. They perform the optimization using either coordinate descent or iterated conditional mode. The estimation of filter parameters is accomplished by referring to adjacent channels that have higher signal-to-noise ratio.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/SSST.1994.287840</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0094-2898
ispartof Proceedings of 26th Southeastern Symposium on System Theory, 1994, p.422-426
issn 0094-2898
2161-8135
language eng
recordid cdi_ieee_primary_287840
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Cleaning
Filters
Image reconstruction
Markov random fields
Parameter estimation
Remote sensing
Signal to noise ratio
Stochastic processes
Working environment noise
title Bayesian classification of multivariate image after MAP reconstruction of noisy channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20classification%20of%20multivariate%20image%20after%20MAP%20reconstruction%20of%20noisy%20channels&rft.btitle=Proceedings%20of%2026th%20Southeastern%20Symposium%20on%20System%20Theory&rft.au=Yonhong%20Jhung&rft.date=1994&rft.spage=422&rft.epage=426&rft.pages=422-426&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=9780818653209&rft.isbn_list=0818653205&rft_id=info:doi/10.1109/SSST.1994.287840&rft_dat=%3Cieee_6IE%3E287840%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=287840&rfr_iscdi=true