Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models

In this paper, back propagation is reinvestigated for an efficient evaluation of the gradient in arbitrary interconnections of recurrent subsystems. It is shown that the error has to be back-propagated through the adjoint model of the system and that the gradient can only be obtained after a delay....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1994-03, Vol.5 (2), p.213-228
Hauptverfasser: Srinivasan, B., Prasad, U.R., Rao, N.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 2
container_start_page 213
container_title IEEE transactions on neural networks
container_volume 5
creator Srinivasan, B.
Prasad, U.R.
Rao, N.J.
description In this paper, back propagation is reinvestigated for an efficient evaluation of the gradient in arbitrary interconnections of recurrent subsystems. It is shown that the error has to be back-propagated through the adjoint model of the system and that the gradient can only be obtained after a delay. A faster version, accelerated back propagation, that eliminates this delay, is also developed. Various schemes including the sensitivity method are studied to update the weights of the network using these gradients. Motivated by the Lyapunov approach and the adjoint model, the predictive back propagation and its variant, targeted back propagation, are proposed. A further refinement, predictive back propagation with filtering is then developed, where the states of the model are also updated. The convergence of this scheme is assured. It is shown that it is sufficient to back propagate as many time steps as the order of the system for convergence. As a preamble, convergence of online batch and sample-wise updates in feedforward models is analyzed using the Lyapunov approach.< >
doi_str_mv 10.1109/72.279186
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_279186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>279186</ieee_id><sourcerecordid>734269848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d938d7cb0496dfd291d62a41ef65788086131267386f4c1e4e1cba36f54126663</originalsourceid><addsrcrecordid>eNqF0T1vFDEQBmALEZEQKNJSRK5AKTb4a_1RQgRJpEhpQr3y2eOLk137sHeL-_cx2hPpoLI188xIoxehM0ouKSXmq2KXTBmq5Rt0Qo2gHSGGv21_IvrOMKaO0ftanwihoifyHTqmmkmlDDtB9bt1z3hX8s5u7RxzwvNjycv2EVv_lGOaKw65tCLg6CHNMUS3uhxwymmMCWzBfp_sFB2u-zrDVPFSY9riAm4ppU3hBEuxI56yh7F-QEfBjhU-Ht5T9Ovnj4erm-7u_vr26ttd57jRc-cN1165DRFG-uCZoV4yKygE2SutiZaU03YH1zIIR0EAdRvLZehFK0vJT9GXdW877_cCdR6mWB2Mo02QlzooLpg0WugmP_9TMk2VJkT8H0reU85ZgxcrdCXXWiAMuxInW_YDJcOf0AbFhjW0Zs8PS5fNBP5VHlJq4NMKIgD8bR-mXwAQG5rB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26351332</pqid></control><display><type>article</type><title>Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models</title><source>IEEE Electronic Library (IEL)</source><creator>Srinivasan, B. ; Prasad, U.R. ; Rao, N.J.</creator><creatorcontrib>Srinivasan, B. ; Prasad, U.R. ; Rao, N.J.</creatorcontrib><description>In this paper, back propagation is reinvestigated for an efficient evaluation of the gradient in arbitrary interconnections of recurrent subsystems. It is shown that the error has to be back-propagated through the adjoint model of the system and that the gradient can only be obtained after a delay. A faster version, accelerated back propagation, that eliminates this delay, is also developed. Various schemes including the sensitivity method are studied to update the weights of the network using these gradients. Motivated by the Lyapunov approach and the adjoint model, the predictive back propagation and its variant, targeted back propagation, are proposed. A further refinement, predictive back propagation with filtering is then developed, where the states of the model are also updated. The convergence of this scheme is assured. It is shown that it is sufficient to back propagate as many time steps as the order of the system for convergence. As a preamble, convergence of online batch and sample-wise updates in feedforward models is analyzed using the Lyapunov approach.&lt; &gt;</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.279186</identifier><identifier>PMID: 18267792</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceleration ; Computational efficiency ; Convergence ; Delay ; Difference equations ; Multilayer perceptrons ; Neural networks ; Nonlinear dynamical systems ; Nonlinear systems ; Predictive models</subject><ispartof>IEEE transactions on neural networks, 1994-03, Vol.5 (2), p.213-228</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d938d7cb0496dfd291d62a41ef65788086131267386f4c1e4e1cba36f54126663</citedby><cites>FETCH-LOGICAL-c398t-d938d7cb0496dfd291d62a41ef65788086131267386f4c1e4e1cba36f54126663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/279186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/279186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasan, B.</creatorcontrib><creatorcontrib>Prasad, U.R.</creatorcontrib><creatorcontrib>Rao, N.J.</creatorcontrib><title>Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this paper, back propagation is reinvestigated for an efficient evaluation of the gradient in arbitrary interconnections of recurrent subsystems. It is shown that the error has to be back-propagated through the adjoint model of the system and that the gradient can only be obtained after a delay. A faster version, accelerated back propagation, that eliminates this delay, is also developed. Various schemes including the sensitivity method are studied to update the weights of the network using these gradients. Motivated by the Lyapunov approach and the adjoint model, the predictive back propagation and its variant, targeted back propagation, are proposed. A further refinement, predictive back propagation with filtering is then developed, where the states of the model are also updated. The convergence of this scheme is assured. It is shown that it is sufficient to back propagate as many time steps as the order of the system for convergence. As a preamble, convergence of online batch and sample-wise updates in feedforward models is analyzed using the Lyapunov approach.&lt; &gt;</description><subject>Acceleration</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Delay</subject><subject>Difference equations</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Predictive models</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqF0T1vFDEQBmALEZEQKNJSRK5AKTb4a_1RQgRJpEhpQr3y2eOLk137sHeL-_cx2hPpoLI188xIoxehM0ouKSXmq2KXTBmq5Rt0Qo2gHSGGv21_IvrOMKaO0ftanwihoifyHTqmmkmlDDtB9bt1z3hX8s5u7RxzwvNjycv2EVv_lGOaKw65tCLg6CHNMUS3uhxwymmMCWzBfp_sFB2u-zrDVPFSY9riAm4ppU3hBEuxI56yh7F-QEfBjhU-Ht5T9Ovnj4erm-7u_vr26ttd57jRc-cN1165DRFG-uCZoV4yKygE2SutiZaU03YH1zIIR0EAdRvLZehFK0vJT9GXdW877_cCdR6mWB2Mo02QlzooLpg0WugmP_9TMk2VJkT8H0reU85ZgxcrdCXXWiAMuxInW_YDJcOf0AbFhjW0Zs8PS5fNBP5VHlJq4NMKIgD8bR-mXwAQG5rB</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Srinivasan, B.</creator><creator>Prasad, U.R.</creator><creator>Rao, N.J.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19940301</creationdate><title>Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models</title><author>Srinivasan, B. ; Prasad, U.R. ; Rao, N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d938d7cb0496dfd291d62a41ef65788086131267386f4c1e4e1cba36f54126663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Acceleration</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Delay</topic><topic>Difference equations</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, B.</creatorcontrib><creatorcontrib>Prasad, U.R.</creatorcontrib><creatorcontrib>Rao, N.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Srinivasan, B.</au><au>Prasad, U.R.</au><au>Rao, N.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>5</volume><issue>2</issue><spage>213</spage><epage>228</epage><pages>213-228</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>In this paper, back propagation is reinvestigated for an efficient evaluation of the gradient in arbitrary interconnections of recurrent subsystems. It is shown that the error has to be back-propagated through the adjoint model of the system and that the gradient can only be obtained after a delay. A faster version, accelerated back propagation, that eliminates this delay, is also developed. Various schemes including the sensitivity method are studied to update the weights of the network using these gradients. Motivated by the Lyapunov approach and the adjoint model, the predictive back propagation and its variant, targeted back propagation, are proposed. A further refinement, predictive back propagation with filtering is then developed, where the states of the model are also updated. The convergence of this scheme is assured. It is shown that it is sufficient to back propagate as many time steps as the order of the system for convergence. As a preamble, convergence of online batch and sample-wise updates in feedforward models is analyzed using the Lyapunov approach.&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18267792</pmid><doi>10.1109/72.279186</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1994-03, Vol.5 (2), p.213-228
issn 1045-9227
1941-0093
language eng
recordid cdi_ieee_primary_279186
source IEEE Electronic Library (IEL)
subjects Acceleration
Computational efficiency
Convergence
Delay
Difference equations
Multilayer perceptrons
Neural networks
Nonlinear dynamical systems
Nonlinear systems
Predictive models
title Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20propagation%20through%20adjoints%20for%20the%20identification%20of%20nonlinear%20dynamic%20systems%20using%20recurrent%20neural%20models&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Srinivasan,%20B.&rft.date=1994-03-01&rft.volume=5&rft.issue=2&rft.spage=213&rft.epage=228&rft.pages=213-228&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.279186&rft_dat=%3Cproquest_RIE%3E734269848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26351332&rft_id=info:pmid/18267792&rft_ieee_id=279186&rfr_iscdi=true