Estimation of transient thermal impedance for constant current of a power thyristor using temperature field calculation
Transient thermal impedance for constant current is calculated by dividing the overtemperature of a given spot within a silicon pellet by power losses. The calculation of the temperature field in the silicon pellet is based on the assumption that losses are produced in the silicon pellet only. Calcu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1993-10, Vol.40 (10), p.1885-1887 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1887 |
---|---|
container_issue | 10 |
container_start_page | 1885 |
container_title | IEEE transactions on electron devices |
container_volume | 40 |
creator | Bencic, Z. Besic, A. Damjanic, F. Selih, J. |
description | Transient thermal impedance for constant current is calculated by dividing the overtemperature of a given spot within a silicon pellet by power losses. The calculation of the temperature field in the silicon pellet is based on the assumption that losses are produced in the silicon pellet only. Calculated results for one power thyristor are compared to its catalog values. The best agreement was obtained in the case of uniform loss distribution throughout the silicon pellet volume, with the temperature at the r/2 spot in the central silicon pellet plane being taken as virtual junction temperature. Understandably, the best agreement obtained was for a temperature at the r/2 spot in silicon pellet's central plane, since the catalog curve is based on the measurement of forward voltage drop which is dependent on total temperature field in a silicon pellet. The difference between calculated transient thermal impedance curve for constant current and its catalog curve in the entire time area is, in this case, for cooling from the anode side, from the cathode side, and from both sides, 11.4, 10.3, and 3.6%, respectively.< > |
doi_str_mv | 10.1109/16.277364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_277364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>277364</ieee_id><sourcerecordid>28629629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-3402a29c3516c5af19f1b5bd9df949af1e534cc699aa03b9b35df944e751b89c3</originalsourceid><addsrcrecordid>eNo9kEtLxDAURoMoOI4u3LrKQgQXHfNusxQZHzDgRtclTW810pdJyjD_3owdBgLh8p1zQz6ErilZUUr0A1UrludciRO0oFLmmVZCnaIFIbTINC_4OboI4SeNSgi2QNt1iK4z0Q09HhocvemDgz7i-A2-My123Qi16S3gZvDYDn2IJsV28n6PJcfgcdiCT8bOuxATNQXXf-EISfUmTj65DtoaW9Paqf1_7BKdNaYNcHW4l-jzef3x9Jpt3l_enh43mWVKxYwLwgzTlkuqrDQN1Q2tZFXrutFCpxkkF9YqrY0hvNIVl_tEQC5pVSRvie7mvaMfficIsexcsNC2podhCiUrFNPpJPB-Bq0fQvDQlKNPxfhdSUm5r7akqpyrTeztYakJ6U9NKs26cBQEIYUsWMJuZswBwDE97PgDvwqDhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28629629</pqid></control><display><type>article</type><title>Estimation of transient thermal impedance for constant current of a power thyristor using temperature field calculation</title><source>IEEE Electronic Library (IEL)</source><creator>Bencic, Z. ; Besic, A. ; Damjanic, F. ; Selih, J.</creator><creatorcontrib>Bencic, Z. ; Besic, A. ; Damjanic, F. ; Selih, J.</creatorcontrib><description>Transient thermal impedance for constant current is calculated by dividing the overtemperature of a given spot within a silicon pellet by power losses. The calculation of the temperature field in the silicon pellet is based on the assumption that losses are produced in the silicon pellet only. Calculated results for one power thyristor are compared to its catalog values. The best agreement was obtained in the case of uniform loss distribution throughout the silicon pellet volume, with the temperature at the r/2 spot in the central silicon pellet plane being taken as virtual junction temperature. Understandably, the best agreement obtained was for a temperature at the r/2 spot in silicon pellet's central plane, since the catalog curve is based on the measurement of forward voltage drop which is dependent on total temperature field in a silicon pellet. The difference between calculated transient thermal impedance curve for constant current and its catalog curve in the entire time area is, in this case, for cooling from the anode side, from the cathode side, and from both sides, 11.4, 10.3, and 3.6%, respectively.< ></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.277364</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuits ; Electronics ; Exact sciences and technology ; Impedance ; Other multijunction devices. Power transistors. Thyristors ; Rough surfaces ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Surface resistance ; Surface roughness ; Temperature ; Thermal conductivity ; Thyristors ; Voltage</subject><ispartof>IEEE transactions on electron devices, 1993-10, Vol.40 (10), p.1885-1887</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-3402a29c3516c5af19f1b5bd9df949af1e534cc699aa03b9b35df944e751b89c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/277364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/277364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4008582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bencic, Z.</creatorcontrib><creatorcontrib>Besic, A.</creatorcontrib><creatorcontrib>Damjanic, F.</creatorcontrib><creatorcontrib>Selih, J.</creatorcontrib><title>Estimation of transient thermal impedance for constant current of a power thyristor using temperature field calculation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Transient thermal impedance for constant current is calculated by dividing the overtemperature of a given spot within a silicon pellet by power losses. The calculation of the temperature field in the silicon pellet is based on the assumption that losses are produced in the silicon pellet only. Calculated results for one power thyristor are compared to its catalog values. The best agreement was obtained in the case of uniform loss distribution throughout the silicon pellet volume, with the temperature at the r/2 spot in the central silicon pellet plane being taken as virtual junction temperature. Understandably, the best agreement obtained was for a temperature at the r/2 spot in silicon pellet's central plane, since the catalog curve is based on the measurement of forward voltage drop which is dependent on total temperature field in a silicon pellet. The difference between calculated transient thermal impedance curve for constant current and its catalog curve in the entire time area is, in this case, for cooling from the anode side, from the cathode side, and from both sides, 11.4, 10.3, and 3.6%, respectively.< ></description><subject>Applied sciences</subject><subject>Circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Rough surfaces</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Surface resistance</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thyristors</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAURoMoOI4u3LrKQgQXHfNusxQZHzDgRtclTW810pdJyjD_3owdBgLh8p1zQz6ErilZUUr0A1UrludciRO0oFLmmVZCnaIFIbTINC_4OboI4SeNSgi2QNt1iK4z0Q09HhocvemDgz7i-A2-My123Qi16S3gZvDYDn2IJsV28n6PJcfgcdiCT8bOuxATNQXXf-EISfUmTj65DtoaW9Paqf1_7BKdNaYNcHW4l-jzef3x9Jpt3l_enh43mWVKxYwLwgzTlkuqrDQN1Q2tZFXrutFCpxkkF9YqrY0hvNIVl_tEQC5pVSRvie7mvaMfficIsexcsNC2podhCiUrFNPpJPB-Bq0fQvDQlKNPxfhdSUm5r7akqpyrTeztYakJ6U9NKs26cBQEIYUsWMJuZswBwDE97PgDvwqDhA</recordid><startdate>19931001</startdate><enddate>19931001</enddate><creator>Bencic, Z.</creator><creator>Besic, A.</creator><creator>Damjanic, F.</creator><creator>Selih, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19931001</creationdate><title>Estimation of transient thermal impedance for constant current of a power thyristor using temperature field calculation</title><author>Bencic, Z. ; Besic, A. ; Damjanic, F. ; Selih, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-3402a29c3516c5af19f1b5bd9df949af1e534cc699aa03b9b35df944e751b89c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Rough surfaces</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Surface resistance</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thyristors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bencic, Z.</creatorcontrib><creatorcontrib>Besic, A.</creatorcontrib><creatorcontrib>Damjanic, F.</creatorcontrib><creatorcontrib>Selih, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bencic, Z.</au><au>Besic, A.</au><au>Damjanic, F.</au><au>Selih, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of transient thermal impedance for constant current of a power thyristor using temperature field calculation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1993-10-01</date><risdate>1993</risdate><volume>40</volume><issue>10</issue><spage>1885</spage><epage>1887</epage><pages>1885-1887</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Transient thermal impedance for constant current is calculated by dividing the overtemperature of a given spot within a silicon pellet by power losses. The calculation of the temperature field in the silicon pellet is based on the assumption that losses are produced in the silicon pellet only. Calculated results for one power thyristor are compared to its catalog values. The best agreement was obtained in the case of uniform loss distribution throughout the silicon pellet volume, with the temperature at the r/2 spot in the central silicon pellet plane being taken as virtual junction temperature. Understandably, the best agreement obtained was for a temperature at the r/2 spot in silicon pellet's central plane, since the catalog curve is based on the measurement of forward voltage drop which is dependent on total temperature field in a silicon pellet. The difference between calculated transient thermal impedance curve for constant current and its catalog curve in the entire time area is, in this case, for cooling from the anode side, from the cathode side, and from both sides, 11.4, 10.3, and 3.6%, respectively.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.277364</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 1993-10, Vol.40 (10), p.1885-1887 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_277364 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Circuits Electronics Exact sciences and technology Impedance Other multijunction devices. Power transistors. Thyristors Rough surfaces Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Surface resistance Surface roughness Temperature Thermal conductivity Thyristors Voltage |
title | Estimation of transient thermal impedance for constant current of a power thyristor using temperature field calculation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20transient%20thermal%20impedance%20for%20constant%20current%20of%20a%20power%20thyristor%20using%20temperature%20field%20calculation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Bencic,%20Z.&rft.date=1993-10-01&rft.volume=40&rft.issue=10&rft.spage=1885&rft.epage=1887&rft.pages=1885-1887&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.277364&rft_dat=%3Cproquest_RIE%3E28629629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28629629&rft_id=info:pmid/&rft_ieee_id=277364&rfr_iscdi=true |