Neural network application to comprehensive engine diagnostics

The authors examine the application of trainable classification systems to the problem of diagnosing faults in engines at the manufacturing plant. It is demonstrated how a combination of conventional statistical processing methods and neural networks can be combined to create a classifier system for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marko, K.A., Bryant, B., Soderborg, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022 vol.2
container_issue
container_start_page 1016
container_title
container_volume
creator Marko, K.A.
Bryant, B.
Soderborg, N.
description The authors examine the application of trainable classification systems to the problem of diagnosing faults in engines at the manufacturing plant. It is demonstrated how a combination of conventional statistical processing methods and neural networks can be combined to create a classifier system for engine diagnostics. The most significant computational effort is required for the principal component analysis and to properly develop the hard-shell classifiers using data sets augmented with Monte Carlo methods. Once these procedures are carried out, the application of neural networks to the data set to obtain the trainable classifier is quite straightforward.< >
doi_str_mv 10.1109/ICSMC.1992.271659
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_271659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>271659</ieee_id><sourcerecordid>271659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1309-61666e4810daf9c60945d7ba39a44069b7fa04f82df339c37b039abfef4a41333</originalsourceid><addsrcrecordid>eNotj81KxDAURgMiqOM8gK7yAq03TZr0bgQp_gyMulDXw217M0Y7aWmq4ts7MH6bszhw4BPiQkGuFODVqn55rHOFWOSFU7bEI3EGrgINroDqRCxT-oD9TAmIeCqun_hrol5Gnn-G6VPSOPahpTkMUc6DbIfdOPE7xxS-WXLchsiyC7SNQ5pDm87Fsac-8fKfC_F2d_taP2Tr5_tVfbPOgtKAmVXWWjaVgo48thbQlJ1rSCMZAxYb5wmMr4rOa42tdg3sVePZGzJKa70Ql4duYObNOIUdTb-bw0P9B20eRzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network application to comprehensive engine diagnostics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marko, K.A. ; Bryant, B. ; Soderborg, N.</creator><creatorcontrib>Marko, K.A. ; Bryant, B. ; Soderborg, N.</creatorcontrib><description>The authors examine the application of trainable classification systems to the problem of diagnosing faults in engines at the manufacturing plant. It is demonstrated how a combination of conventional statistical processing methods and neural networks can be combined to create a classifier system for engine diagnostics. The most significant computational effort is required for the principal component analysis and to properly develop the hard-shell classifiers using data sets augmented with Monte Carlo methods. Once these procedures are carried out, the application of neural networks to the data set to obtain the trainable classifier is quite straightforward.&lt; &gt;</description><identifier>ISBN: 0780307208</identifier><identifier>ISBN: 9780780307209</identifier><identifier>DOI: 10.1109/ICSMC.1992.271659</identifier><language>eng</language><publisher>IEEE</publisher><subject>Engines ; Fault detection ; Fault diagnosis ; Manufacturing processes ; Neural networks ; Process control ; Sensor fusion ; Statistical analysis ; Statistical distributions ; Training data</subject><ispartof>[Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, 1992, p.1016-1022 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/271659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/271659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marko, K.A.</creatorcontrib><creatorcontrib>Bryant, B.</creatorcontrib><creatorcontrib>Soderborg, N.</creatorcontrib><title>Neural network application to comprehensive engine diagnostics</title><title>[Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics</title><addtitle>ICSMC</addtitle><description>The authors examine the application of trainable classification systems to the problem of diagnosing faults in engines at the manufacturing plant. It is demonstrated how a combination of conventional statistical processing methods and neural networks can be combined to create a classifier system for engine diagnostics. The most significant computational effort is required for the principal component analysis and to properly develop the hard-shell classifiers using data sets augmented with Monte Carlo methods. Once these procedures are carried out, the application of neural networks to the data set to obtain the trainable classifier is quite straightforward.&lt; &gt;</description><subject>Engines</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Manufacturing processes</subject><subject>Neural networks</subject><subject>Process control</subject><subject>Sensor fusion</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Training data</subject><isbn>0780307208</isbn><isbn>9780780307209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAURgMiqOM8gK7yAq03TZr0bgQp_gyMulDXw217M0Y7aWmq4ts7MH6bszhw4BPiQkGuFODVqn55rHOFWOSFU7bEI3EGrgINroDqRCxT-oD9TAmIeCqun_hrol5Gnn-G6VPSOPahpTkMUc6DbIfdOPE7xxS-WXLchsiyC7SNQ5pDm87Fsac-8fKfC_F2d_taP2Tr5_tVfbPOgtKAmVXWWjaVgo48thbQlJ1rSCMZAxYb5wmMr4rOa42tdg3sVePZGzJKa70Ql4duYObNOIUdTb-bw0P9B20eRzw</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Marko, K.A.</creator><creator>Bryant, B.</creator><creator>Soderborg, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>Neural network application to comprehensive engine diagnostics</title><author>Marko, K.A. ; Bryant, B. ; Soderborg, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1309-61666e4810daf9c60945d7ba39a44069b7fa04f82df339c37b039abfef4a41333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Engines</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Manufacturing processes</topic><topic>Neural networks</topic><topic>Process control</topic><topic>Sensor fusion</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Marko, K.A.</creatorcontrib><creatorcontrib>Bryant, B.</creatorcontrib><creatorcontrib>Soderborg, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marko, K.A.</au><au>Bryant, B.</au><au>Soderborg, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network application to comprehensive engine diagnostics</atitle><btitle>[Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics</btitle><stitle>ICSMC</stitle><date>1992</date><risdate>1992</risdate><spage>1016</spage><epage>1022 vol.2</epage><pages>1016-1022 vol.2</pages><isbn>0780307208</isbn><isbn>9780780307209</isbn><abstract>The authors examine the application of trainable classification systems to the problem of diagnosing faults in engines at the manufacturing plant. It is demonstrated how a combination of conventional statistical processing methods and neural networks can be combined to create a classifier system for engine diagnostics. The most significant computational effort is required for the principal component analysis and to properly develop the hard-shell classifiers using data sets augmented with Monte Carlo methods. Once these procedures are carried out, the application of neural networks to the data set to obtain the trainable classifier is quite straightforward.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.1992.271659</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780307208
ispartof [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, 1992, p.1016-1022 vol.2
issn
language eng
recordid cdi_ieee_primary_271659
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Engines
Fault detection
Fault diagnosis
Manufacturing processes
Neural networks
Process control
Sensor fusion
Statistical analysis
Statistical distributions
Training data
title Neural network application to comprehensive engine diagnostics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20application%20to%20comprehensive%20engine%20diagnostics&rft.btitle=%5BProceedings%5D%201992%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics&rft.au=Marko,%20K.A.&rft.date=1992&rft.spage=1016&rft.epage=1022%20vol.2&rft.pages=1016-1022%20vol.2&rft.isbn=0780307208&rft.isbn_list=9780780307209&rft_id=info:doi/10.1109/ICSMC.1992.271659&rft_dat=%3Cieee_6IE%3E271659%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=271659&rfr_iscdi=true