A parallel QR algorithm for the symmetrical tridiagonal eigenvalue problem

A parallel/pipelined algorithm and its architecture are proposed to solve the symmetric eigenvalue problem. This algorithm is based on Given's rotations, and it is associated with the initial reduction of the dense matrix to a tridiagonal one using Householder's transformations. The perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Djouadi, A., Jamali, M.M., Kwatra, S.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595 vol.1
container_issue
container_start_page 591
container_title
container_volume
creator Djouadi, A.
Jamali, M.M.
Kwatra, S.C.
description A parallel/pipelined algorithm and its architecture are proposed to solve the symmetric eigenvalue problem. This algorithm is based on Given's rotations, and it is associated with the initial reduction of the dense matrix to a tridiagonal one using Householder's transformations. The performance of this algorithm is described and compared to the performance of the sequential one. It can be shown that the cost of the eigendecomposition falls from O(m*n) to O(m+n), where m and n denote the matrix order and the number of iterations, respectively. This algorithm is mapped on m processors to compute the eigenvalues and eigenvectors simultaneously.< >
doi_str_mv 10.1109/ACSSC.1992.269203
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_269203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>269203</ieee_id><sourcerecordid>269203</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-2d710ba98d7b1e9d22a6f88274af26562e523b650fdfb05bb2da8cdb1e36dd4b3</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0eEqH0A2DlH0iwr2PHXkYRT1VCUFhXdn3TGjlN5ASk_j2RymzOLI5mMYTcclZwzsx93azXTcGNgQKUASbOSAayUjkIJs7JNdNcK8EVYxck40zqXAkjrshyHL_ZnFLyUlYZea3pYJONESN9_6A27voUpn1H2z7RaY90PHYdTilsbaQzfLC7_jB3DDs8_Nr4g3RIvYvY3ZDL1sYRl_9ckK_Hh8_mOV-9Pb009SoPvCqnHHzFmbNG-8pxNB7AqlZrqErbgpIKUIJwSrLWt45J58BbvfWzK5T3pRMLcnfaDYi4GVLobDpuTi-IP0wpT74</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A parallel QR algorithm for the symmetrical tridiagonal eigenvalue problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Djouadi, A. ; Jamali, M.M. ; Kwatra, S.C.</creator><creatorcontrib>Djouadi, A. ; Jamali, M.M. ; Kwatra, S.C.</creatorcontrib><description>A parallel/pipelined algorithm and its architecture are proposed to solve the symmetric eigenvalue problem. This algorithm is based on Given's rotations, and it is associated with the initial reduction of the dense matrix to a tridiagonal one using Householder's transformations. The performance of this algorithm is described and compared to the performance of the sequential one. It can be shown that the cost of the eigendecomposition falls from O(m*n) to O(m+n), where m and n denote the matrix order and the number of iterations, respectively. This algorithm is mapped on m processors to compute the eigenvalues and eigenvectors simultaneously.&lt; &gt;</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 0818631600</identifier><identifier>ISBN: 9780818631603</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1992.269203</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Architecture ; Convergence ; Costs ; Covariance matrix ; Direction of arrival estimation ; Eigenvalues and eigenfunctions ; Matrix decomposition ; Pipeline processing ; Signal processing algorithms ; Symmetric matrices</subject><ispartof>[1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems &amp; Computers, 1992, p.591-595 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/269203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/269203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Djouadi, A.</creatorcontrib><creatorcontrib>Jamali, M.M.</creatorcontrib><creatorcontrib>Kwatra, S.C.</creatorcontrib><title>A parallel QR algorithm for the symmetrical tridiagonal eigenvalue problem</title><title>[1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems &amp; Computers</title><addtitle>ACSSC</addtitle><description>A parallel/pipelined algorithm and its architecture are proposed to solve the symmetric eigenvalue problem. This algorithm is based on Given's rotations, and it is associated with the initial reduction of the dense matrix to a tridiagonal one using Householder's transformations. The performance of this algorithm is described and compared to the performance of the sequential one. It can be shown that the cost of the eigendecomposition falls from O(m*n) to O(m+n), where m and n denote the matrix order and the number of iterations, respectively. This algorithm is mapped on m processors to compute the eigenvalues and eigenvectors simultaneously.&lt; &gt;</description><subject>Architecture</subject><subject>Convergence</subject><subject>Costs</subject><subject>Covariance matrix</subject><subject>Direction of arrival estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Matrix decomposition</subject><subject>Pipeline processing</subject><subject>Signal processing algorithms</subject><subject>Symmetric matrices</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>0818631600</isbn><isbn>9780818631603</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURC0eEqH0A2DlH0iwr2PHXkYRT1VCUFhXdn3TGjlN5ASk_j2RymzOLI5mMYTcclZwzsx93azXTcGNgQKUASbOSAayUjkIJs7JNdNcK8EVYxck40zqXAkjrshyHL_ZnFLyUlYZea3pYJONESN9_6A27voUpn1H2z7RaY90PHYdTilsbaQzfLC7_jB3DDs8_Nr4g3RIvYvY3ZDL1sYRl_9ckK_Hh8_mOV-9Pb009SoPvCqnHHzFmbNG-8pxNB7AqlZrqErbgpIKUIJwSrLWt45J58BbvfWzK5T3pRMLcnfaDYi4GVLobDpuTi-IP0wpT74</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Djouadi, A.</creator><creator>Jamali, M.M.</creator><creator>Kwatra, S.C.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>A parallel QR algorithm for the symmetrical tridiagonal eigenvalue problem</title><author>Djouadi, A. ; Jamali, M.M. ; Kwatra, S.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-2d710ba98d7b1e9d22a6f88274af26562e523b650fdfb05bb2da8cdb1e36dd4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Architecture</topic><topic>Convergence</topic><topic>Costs</topic><topic>Covariance matrix</topic><topic>Direction of arrival estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Matrix decomposition</topic><topic>Pipeline processing</topic><topic>Signal processing algorithms</topic><topic>Symmetric matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Djouadi, A.</creatorcontrib><creatorcontrib>Jamali, M.M.</creatorcontrib><creatorcontrib>Kwatra, S.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djouadi, A.</au><au>Jamali, M.M.</au><au>Kwatra, S.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A parallel QR algorithm for the symmetrical tridiagonal eigenvalue problem</atitle><btitle>[1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems &amp; Computers</btitle><stitle>ACSSC</stitle><date>1992</date><risdate>1992</risdate><spage>591</spage><epage>595 vol.1</epage><pages>591-595 vol.1</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>0818631600</isbn><isbn>9780818631603</isbn><abstract>A parallel/pipelined algorithm and its architecture are proposed to solve the symmetric eigenvalue problem. This algorithm is based on Given's rotations, and it is associated with the initial reduction of the dense matrix to a tridiagonal one using Householder's transformations. The performance of this algorithm is described and compared to the performance of the sequential one. It can be shown that the cost of the eigendecomposition falls from O(m*n) to O(m+n), where m and n denote the matrix order and the number of iterations, respectively. This algorithm is mapped on m processors to compute the eigenvalues and eigenvectors simultaneously.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ACSSC.1992.269203</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers, 1992, p.591-595 vol.1
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_269203
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Architecture
Convergence
Costs
Covariance matrix
Direction of arrival estimation
Eigenvalues and eigenfunctions
Matrix decomposition
Pipeline processing
Signal processing algorithms
Symmetric matrices
title A parallel QR algorithm for the symmetrical tridiagonal eigenvalue problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20parallel%20QR%20algorithm%20for%20the%20symmetrical%20tridiagonal%20eigenvalue%20problem&rft.btitle=%5B1992%5D%20Conference%20Record%20of%20the%20Twenty-Sixth%20Asilomar%20Conference%20on%20Signals,%20Systems%20&%20Computers&rft.au=Djouadi,%20A.&rft.date=1992&rft.spage=591&rft.epage=595%20vol.1&rft.pages=591-595%20vol.1&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=0818631600&rft.isbn_list=9780818631603&rft_id=info:doi/10.1109/ACSSC.1992.269203&rft_dat=%3Cieee_6IE%3E269203%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=269203&rfr_iscdi=true