The use of the differential steepest descent algorithm for adaptive template matching
The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weigh...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | |
container_start_page | 198 |
container_title | |
container_volume | |
creator | Ciaccio, E.J. Micheli-Tzanakou, E. Dunn, S.M. Wit, A.L. |
description | The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.< > |
doi_str_mv | 10.1109/IBED.1992.247112 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_247112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>247112</ieee_id><sourcerecordid>247112</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-453bb62c28ba09df1f8630617c8e711f00908d296d8cafdab95da3176c215783</originalsourceid><addsrcrecordid>eNotT81KxDAYDIigrL2Lp7xAa37aJjnquurCggfX8_I1-bKNtNvSRMG3N7A7DMwwh2GGkHvOKs6Zedw-b14qboyoRK04F1ekMEqzTMlULfUNKWL8Zhl13UgubsnXvkf6E5FOnqZsXfAeFzylAAONCXHGmKjDaHNGYThOS0j9SP20UHAwp_CLNOE4D5CQjpBsH07HO3LtYYhYXHRFPl83-_V7uft4266fdmXQJpV5Qte1wgrdATPOc69byVqurMa83jNmmHbCtE5b8A460ziQXLVW8EZpuSIP59aAiId5CSMsf4fzc_kPySFPJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The use of the differential steepest descent algorithm for adaptive template matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ciaccio, E.J. ; Micheli-Tzanakou, E. ; Dunn, S.M. ; Wit, A.L.</creator><creatorcontrib>Ciaccio, E.J. ; Micheli-Tzanakou, E. ; Dunn, S.M. ; Wit, A.L.</creatorcontrib><description>The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.< ></description><identifier>ISBN: 9780780307438</identifier><identifier>ISBN: 0780307437</identifier><identifier>DOI: 10.1109/IBED.1992.247112</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blood pressure ; Convergence ; Data preprocessing ; Equations ; Impedance matching ; Iterative algorithms ; Least squares methods ; Pattern matching ; Pattern recognition ; Sampling methods</subject><ispartof>Proceedings of the 1992 International Biomedical Engineering Days, 1992, p.198-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/247112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/247112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ciaccio, E.J.</creatorcontrib><creatorcontrib>Micheli-Tzanakou, E.</creatorcontrib><creatorcontrib>Dunn, S.M.</creatorcontrib><creatorcontrib>Wit, A.L.</creatorcontrib><title>The use of the differential steepest descent algorithm for adaptive template matching</title><title>Proceedings of the 1992 International Biomedical Engineering Days</title><addtitle>IBED</addtitle><description>The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.< ></description><subject>Blood pressure</subject><subject>Convergence</subject><subject>Data preprocessing</subject><subject>Equations</subject><subject>Impedance matching</subject><subject>Iterative algorithms</subject><subject>Least squares methods</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Sampling methods</subject><isbn>9780780307438</isbn><isbn>0780307437</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81KxDAYDIigrL2Lp7xAa37aJjnquurCggfX8_I1-bKNtNvSRMG3N7A7DMwwh2GGkHvOKs6Zedw-b14qboyoRK04F1ekMEqzTMlULfUNKWL8Zhl13UgubsnXvkf6E5FOnqZsXfAeFzylAAONCXHGmKjDaHNGYThOS0j9SP20UHAwp_CLNOE4D5CQjpBsH07HO3LtYYhYXHRFPl83-_V7uft4266fdmXQJpV5Qte1wgrdATPOc69byVqurMa83jNmmHbCtE5b8A460ziQXLVW8EZpuSIP59aAiId5CSMsf4fzc_kPySFPJA</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Ciaccio, E.J.</creator><creator>Micheli-Tzanakou, E.</creator><creator>Dunn, S.M.</creator><creator>Wit, A.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>The use of the differential steepest descent algorithm for adaptive template matching</title><author>Ciaccio, E.J. ; Micheli-Tzanakou, E. ; Dunn, S.M. ; Wit, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-453bb62c28ba09df1f8630617c8e711f00908d296d8cafdab95da3176c215783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Blood pressure</topic><topic>Convergence</topic><topic>Data preprocessing</topic><topic>Equations</topic><topic>Impedance matching</topic><topic>Iterative algorithms</topic><topic>Least squares methods</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ciaccio, E.J.</creatorcontrib><creatorcontrib>Micheli-Tzanakou, E.</creatorcontrib><creatorcontrib>Dunn, S.M.</creatorcontrib><creatorcontrib>Wit, A.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ciaccio, E.J.</au><au>Micheli-Tzanakou, E.</au><au>Dunn, S.M.</au><au>Wit, A.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The use of the differential steepest descent algorithm for adaptive template matching</atitle><btitle>Proceedings of the 1992 International Biomedical Engineering Days</btitle><stitle>IBED</stitle><date>1992</date><risdate>1992</risdate><spage>198</spage><epage>202</epage><pages>198-202</pages><isbn>9780780307438</isbn><isbn>0780307437</isbn><abstract>The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.< ></abstract><pub>IEEE</pub><doi>10.1109/IBED.1992.247112</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780307438 |
ispartof | Proceedings of the 1992 International Biomedical Engineering Days, 1992, p.198-202 |
issn | |
language | eng |
recordid | cdi_ieee_primary_247112 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Blood pressure Convergence Data preprocessing Equations Impedance matching Iterative algorithms Least squares methods Pattern matching Pattern recognition Sampling methods |
title | The use of the differential steepest descent algorithm for adaptive template matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20use%20of%20the%20differential%20steepest%20descent%20algorithm%20for%20adaptive%20template%20matching&rft.btitle=Proceedings%20of%20the%201992%20International%20Biomedical%20Engineering%20Days&rft.au=Ciaccio,%20E.J.&rft.date=1992&rft.spage=198&rft.epage=202&rft.pages=198-202&rft.isbn=9780780307438&rft.isbn_list=0780307437&rft_id=info:doi/10.1109/IBED.1992.247112&rft_dat=%3Cieee_6IE%3E247112%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=247112&rfr_iscdi=true |