The use of the differential steepest descent algorithm for adaptive template matching

The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ciaccio, E.J., Micheli-Tzanakou, E., Dunn, S.M., Wit, A.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue
container_start_page 198
container_title
container_volume
creator Ciaccio, E.J.
Micheli-Tzanakou, E.
Dunn, S.M.
Wit, A.L.
description The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.< >
doi_str_mv 10.1109/IBED.1992.247112
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_247112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>247112</ieee_id><sourcerecordid>247112</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-453bb62c28ba09df1f8630617c8e711f00908d296d8cafdab95da3176c215783</originalsourceid><addsrcrecordid>eNotT81KxDAYDIigrL2Lp7xAa37aJjnquurCggfX8_I1-bKNtNvSRMG3N7A7DMwwh2GGkHvOKs6Zedw-b14qboyoRK04F1ekMEqzTMlULfUNKWL8Zhl13UgubsnXvkf6E5FOnqZsXfAeFzylAAONCXHGmKjDaHNGYThOS0j9SP20UHAwp_CLNOE4D5CQjpBsH07HO3LtYYhYXHRFPl83-_V7uft4266fdmXQJpV5Qte1wgrdATPOc69byVqurMa83jNmmHbCtE5b8A460ziQXLVW8EZpuSIP59aAiId5CSMsf4fzc_kPySFPJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The use of the differential steepest descent algorithm for adaptive template matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ciaccio, E.J. ; Micheli-Tzanakou, E. ; Dunn, S.M. ; Wit, A.L.</creator><creatorcontrib>Ciaccio, E.J. ; Micheli-Tzanakou, E. ; Dunn, S.M. ; Wit, A.L.</creatorcontrib><description>The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.&lt; &gt;</description><identifier>ISBN: 9780780307438</identifier><identifier>ISBN: 0780307437</identifier><identifier>DOI: 10.1109/IBED.1992.247112</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blood pressure ; Convergence ; Data preprocessing ; Equations ; Impedance matching ; Iterative algorithms ; Least squares methods ; Pattern matching ; Pattern recognition ; Sampling methods</subject><ispartof>Proceedings of the 1992 International Biomedical Engineering Days, 1992, p.198-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/247112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/247112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ciaccio, E.J.</creatorcontrib><creatorcontrib>Micheli-Tzanakou, E.</creatorcontrib><creatorcontrib>Dunn, S.M.</creatorcontrib><creatorcontrib>Wit, A.L.</creatorcontrib><title>The use of the differential steepest descent algorithm for adaptive template matching</title><title>Proceedings of the 1992 International Biomedical Engineering Days</title><addtitle>IBED</addtitle><description>The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.&lt; &gt;</description><subject>Blood pressure</subject><subject>Convergence</subject><subject>Data preprocessing</subject><subject>Equations</subject><subject>Impedance matching</subject><subject>Iterative algorithms</subject><subject>Least squares methods</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Sampling methods</subject><isbn>9780780307438</isbn><isbn>0780307437</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81KxDAYDIigrL2Lp7xAa37aJjnquurCggfX8_I1-bKNtNvSRMG3N7A7DMwwh2GGkHvOKs6Zedw-b14qboyoRK04F1ekMEqzTMlULfUNKWL8Zhl13UgubsnXvkf6E5FOnqZsXfAeFzylAAONCXHGmKjDaHNGYThOS0j9SP20UHAwp_CLNOE4D5CQjpBsH07HO3LtYYhYXHRFPl83-_V7uft4266fdmXQJpV5Qte1wgrdATPOc69byVqurMa83jNmmHbCtE5b8A460ziQXLVW8EZpuSIP59aAiId5CSMsf4fzc_kPySFPJA</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Ciaccio, E.J.</creator><creator>Micheli-Tzanakou, E.</creator><creator>Dunn, S.M.</creator><creator>Wit, A.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>The use of the differential steepest descent algorithm for adaptive template matching</title><author>Ciaccio, E.J. ; Micheli-Tzanakou, E. ; Dunn, S.M. ; Wit, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-453bb62c28ba09df1f8630617c8e711f00908d296d8cafdab95da3176c215783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Blood pressure</topic><topic>Convergence</topic><topic>Data preprocessing</topic><topic>Equations</topic><topic>Impedance matching</topic><topic>Iterative algorithms</topic><topic>Least squares methods</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ciaccio, E.J.</creatorcontrib><creatorcontrib>Micheli-Tzanakou, E.</creatorcontrib><creatorcontrib>Dunn, S.M.</creatorcontrib><creatorcontrib>Wit, A.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ciaccio, E.J.</au><au>Micheli-Tzanakou, E.</au><au>Dunn, S.M.</au><au>Wit, A.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The use of the differential steepest descent algorithm for adaptive template matching</atitle><btitle>Proceedings of the 1992 International Biomedical Engineering Days</btitle><stitle>IBED</stitle><date>1992</date><risdate>1992</risdate><spage>198</spage><epage>202</epage><pages>198-202</pages><isbn>9780780307438</isbn><isbn>0780307437</isbn><abstract>The differential steepest descent algorithm is presented in a form useful for template matching of biomedical signals. A template pattern is adaptively weighted toward optimally matching an input pattern in the least squares sense. Parameters such as gain, DC bias, phase, and sampling interval weights are adjusted iteratively, according to the sum of squares error obtained by subtraction of template from input pattern, point by point. For biomedical pattern recognition, the template pattern may be obtained either from experimental data or from model equations. The technique is relevant to several types of real-time biomedical applications: (1) tracking of pattern parameters over time, (2) preprocessing, such as obtaining the best window and/or normalization of an input pattern before implementation of optimal features selection procedures, and (3) the least squares error at convergence to the optimal weight vector is itself useful information for pattern recognition. The technique is used to match a blood pressure pulse taken from dog data with three harmonics of a model blood pressure wave. Stability and convergence properties of the technique are shown, and suggestions are made for matching patterns that have undergone nonlinear transformations of shape.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/IBED.1992.247112</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780307438
ispartof Proceedings of the 1992 International Biomedical Engineering Days, 1992, p.198-202
issn
language eng
recordid cdi_ieee_primary_247112
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Blood pressure
Convergence
Data preprocessing
Equations
Impedance matching
Iterative algorithms
Least squares methods
Pattern matching
Pattern recognition
Sampling methods
title The use of the differential steepest descent algorithm for adaptive template matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20use%20of%20the%20differential%20steepest%20descent%20algorithm%20for%20adaptive%20template%20matching&rft.btitle=Proceedings%20of%20the%201992%20International%20Biomedical%20Engineering%20Days&rft.au=Ciaccio,%20E.J.&rft.date=1992&rft.spage=198&rft.epage=202&rft.pages=198-202&rft.isbn=9780780307438&rft.isbn_list=0780307437&rft_id=info:doi/10.1109/IBED.1992.247112&rft_dat=%3Cieee_6IE%3E247112%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=247112&rfr_iscdi=true