Multonic Markov word models for large vocabulary continuous speech recognition

A new class of hidden Markov models is proposed for the acoustic representation of words in an automatic speech recognition system. The models, built from combinations of acoustically based sub-word units called fenones, are derived automatically from one or more sample utterances of a word. Because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on speech and audio processing 1993-07, Vol.1 (3), p.334-344
Hauptverfasser: Bahl, L.R., Bellegarda, J.R., de Souza, P.V., Gopalakrishnan, P.S., Nahamoo, D., Picheny, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 3
container_start_page 334
container_title IEEE transactions on speech and audio processing
container_volume 1
creator Bahl, L.R.
Bellegarda, J.R.
de Souza, P.V.
Gopalakrishnan, P.S.
Nahamoo, D.
Picheny, M.A.
description A new class of hidden Markov models is proposed for the acoustic representation of words in an automatic speech recognition system. The models, built from combinations of acoustically based sub-word units called fenones, are derived automatically from one or more sample utterances of a word. Because they are more flexible than previously reported fenone-based word models, they lead to an improved capability of modeling variations in pronunciation. They are therefore particularly useful in the recognition of continuous speech. In addition, their construction is relatively simple, because it can be done using the well-known forward-backward algorithm for parameter estimation of hidden Markov models. Appropriate reestimation formulas are derived for this purpose. Experimental results obtained on a 5000-word vocabulary natural language continuous speech recognition task are presented to illustrate the enhanced power of discrimination of the new models.< >
doi_str_mv 10.1109/89.232617
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_232617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>232617</ieee_id><sourcerecordid>28393350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c61a11ff9facd12ad4e1df007ca926ebfa21d4070b23457aa4367c9865c77883</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EEqUwsDJ5QmJI8UfijxFVFJBaWLpbrvNcDGlc7KSI_56gVEzvpPfT6e4QuqZkRinR90rPGGeCyhM0oVWlCsYrfjpoInghhBTn6CLnD0KIorKcoNdV33SxDQ6vbPqMB_wdU413sYYmYx8TbmzaAj5EZzf9oH-wi20X2j72Gec9gHvHCVzctqELsb1EZ942Ga6Od4rWi8f1_LlYvj29zB-WheOSdYUT1FLqvfbW1ZTZugRae0Kks5oJ2HjLaF0SSTaMl5W0tuRCOq1E5aRUik_R7Wi7T_Grh9yZXcgOmsa2MAQzTHHNeUUG8G4EXYo5J_Bmn8JuqGEoMX-DGaXNONjA3oxsAIB_7vj8Bf5kZto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28393350</pqid></control><display><type>article</type><title>Multonic Markov word models for large vocabulary continuous speech recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Bahl, L.R. ; Bellegarda, J.R. ; de Souza, P.V. ; Gopalakrishnan, P.S. ; Nahamoo, D. ; Picheny, M.A.</creator><creatorcontrib>Bahl, L.R. ; Bellegarda, J.R. ; de Souza, P.V. ; Gopalakrishnan, P.S. ; Nahamoo, D. ; Picheny, M.A.</creatorcontrib><description>A new class of hidden Markov models is proposed for the acoustic representation of words in an automatic speech recognition system. The models, built from combinations of acoustically based sub-word units called fenones, are derived automatically from one or more sample utterances of a word. Because they are more flexible than previously reported fenone-based word models, they lead to an improved capability of modeling variations in pronunciation. They are therefore particularly useful in the recognition of continuous speech. In addition, their construction is relatively simple, because it can be done using the well-known forward-backward algorithm for parameter estimation of hidden Markov models. Appropriate reestimation formulas are derived for this purpose. Experimental results obtained on a 5000-word vocabulary natural language continuous speech recognition task are presented to illustrate the enhanced power of discrimination of the new models.&lt; &gt;</description><identifier>ISSN: 1063-6676</identifier><identifier>EISSN: 1558-2353</identifier><identifier>DOI: 10.1109/89.232617</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic speech recognition ; Decoding ; Equations ; Hidden Markov models ; Loudspeakers ; Natural languages ; Parameter estimation ; Power system modeling ; Speech recognition ; Vocabulary</subject><ispartof>IEEE transactions on speech and audio processing, 1993-07, Vol.1 (3), p.334-344</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c61a11ff9facd12ad4e1df007ca926ebfa21d4070b23457aa4367c9865c77883</citedby><cites>FETCH-LOGICAL-c372t-c61a11ff9facd12ad4e1df007ca926ebfa21d4070b23457aa4367c9865c77883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/232617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/232617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bahl, L.R.</creatorcontrib><creatorcontrib>Bellegarda, J.R.</creatorcontrib><creatorcontrib>de Souza, P.V.</creatorcontrib><creatorcontrib>Gopalakrishnan, P.S.</creatorcontrib><creatorcontrib>Nahamoo, D.</creatorcontrib><creatorcontrib>Picheny, M.A.</creatorcontrib><title>Multonic Markov word models for large vocabulary continuous speech recognition</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>A new class of hidden Markov models is proposed for the acoustic representation of words in an automatic speech recognition system. The models, built from combinations of acoustically based sub-word units called fenones, are derived automatically from one or more sample utterances of a word. Because they are more flexible than previously reported fenone-based word models, they lead to an improved capability of modeling variations in pronunciation. They are therefore particularly useful in the recognition of continuous speech. In addition, their construction is relatively simple, because it can be done using the well-known forward-backward algorithm for parameter estimation of hidden Markov models. Appropriate reestimation formulas are derived for this purpose. Experimental results obtained on a 5000-word vocabulary natural language continuous speech recognition task are presented to illustrate the enhanced power of discrimination of the new models.&lt; &gt;</description><subject>Automatic speech recognition</subject><subject>Decoding</subject><subject>Equations</subject><subject>Hidden Markov models</subject><subject>Loudspeakers</subject><subject>Natural languages</subject><subject>Parameter estimation</subject><subject>Power system modeling</subject><subject>Speech recognition</subject><subject>Vocabulary</subject><issn>1063-6676</issn><issn>1558-2353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EEqUwsDJ5QmJI8UfijxFVFJBaWLpbrvNcDGlc7KSI_56gVEzvpPfT6e4QuqZkRinR90rPGGeCyhM0oVWlCsYrfjpoInghhBTn6CLnD0KIorKcoNdV33SxDQ6vbPqMB_wdU413sYYmYx8TbmzaAj5EZzf9oH-wi20X2j72Gec9gHvHCVzctqELsb1EZ942Ga6Od4rWi8f1_LlYvj29zB-WheOSdYUT1FLqvfbW1ZTZugRae0Kks5oJ2HjLaF0SSTaMl5W0tuRCOq1E5aRUik_R7Wi7T_Grh9yZXcgOmsa2MAQzTHHNeUUG8G4EXYo5J_Bmn8JuqGEoMX-DGaXNONjA3oxsAIB_7vj8Bf5kZto</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Bahl, L.R.</creator><creator>Bellegarda, J.R.</creator><creator>de Souza, P.V.</creator><creator>Gopalakrishnan, P.S.</creator><creator>Nahamoo, D.</creator><creator>Picheny, M.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930701</creationdate><title>Multonic Markov word models for large vocabulary continuous speech recognition</title><author>Bahl, L.R. ; Bellegarda, J.R. ; de Souza, P.V. ; Gopalakrishnan, P.S. ; Nahamoo, D. ; Picheny, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c61a11ff9facd12ad4e1df007ca926ebfa21d4070b23457aa4367c9865c77883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Automatic speech recognition</topic><topic>Decoding</topic><topic>Equations</topic><topic>Hidden Markov models</topic><topic>Loudspeakers</topic><topic>Natural languages</topic><topic>Parameter estimation</topic><topic>Power system modeling</topic><topic>Speech recognition</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Bahl, L.R.</creatorcontrib><creatorcontrib>Bellegarda, J.R.</creatorcontrib><creatorcontrib>de Souza, P.V.</creatorcontrib><creatorcontrib>Gopalakrishnan, P.S.</creatorcontrib><creatorcontrib>Nahamoo, D.</creatorcontrib><creatorcontrib>Picheny, M.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bahl, L.R.</au><au>Bellegarda, J.R.</au><au>de Souza, P.V.</au><au>Gopalakrishnan, P.S.</au><au>Nahamoo, D.</au><au>Picheny, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multonic Markov word models for large vocabulary continuous speech recognition</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>1993-07-01</date><risdate>1993</risdate><volume>1</volume><issue>3</issue><spage>334</spage><epage>344</epage><pages>334-344</pages><issn>1063-6676</issn><eissn>1558-2353</eissn><coden>IESPEJ</coden><abstract>A new class of hidden Markov models is proposed for the acoustic representation of words in an automatic speech recognition system. The models, built from combinations of acoustically based sub-word units called fenones, are derived automatically from one or more sample utterances of a word. Because they are more flexible than previously reported fenone-based word models, they lead to an improved capability of modeling variations in pronunciation. They are therefore particularly useful in the recognition of continuous speech. In addition, their construction is relatively simple, because it can be done using the well-known forward-backward algorithm for parameter estimation of hidden Markov models. Appropriate reestimation formulas are derived for this purpose. Experimental results obtained on a 5000-word vocabulary natural language continuous speech recognition task are presented to illustrate the enhanced power of discrimination of the new models.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/89.232617</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6676
ispartof IEEE transactions on speech and audio processing, 1993-07, Vol.1 (3), p.334-344
issn 1063-6676
1558-2353
language eng
recordid cdi_ieee_primary_232617
source IEEE Electronic Library (IEL)
subjects Automatic speech recognition
Decoding
Equations
Hidden Markov models
Loudspeakers
Natural languages
Parameter estimation
Power system modeling
Speech recognition
Vocabulary
title Multonic Markov word models for large vocabulary continuous speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multonic%20Markov%20word%20models%20for%20large%20vocabulary%20continuous%20speech%20recognition&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Bahl,%20L.R.&rft.date=1993-07-01&rft.volume=1&rft.issue=3&rft.spage=334&rft.epage=344&rft.pages=334-344&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/89.232617&rft_dat=%3Cproquest_RIE%3E28393350%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28393350&rft_id=info:pmid/&rft_ieee_id=232617&rfr_iscdi=true