An efficient neural network architecture for recognition of spatial pattern invariants

The authors describe a neural architecture for efficient recognition of invariant features placed arbitrarily in patterns of data. The architecture provides versatility in invariant selection with minimal computation and storage requirements. Operating in dumb mode, the architecture, called the big,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Healy, M.J., Caudell, T.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213 vol.4
container_issue
container_start_page 208
container_title
container_volume 4
creator Healy, M.J.
Caudell, T.P.
description The authors describe a neural architecture for efficient recognition of invariant features placed arbitrarily in patterns of data. The architecture provides versatility in invariant selection with minimal computation and storage requirements. Operating in dumb mode, the architecture, called the big, dumb mass detector (BDMD), autonomously extracts fixed-size subsets of pattern components based upon total activation in the receptive fields of detector nodes. The BDMD sends these subset patterns to a pattern recognition neural network (PR network, an ART system) whose input field has exactly as many nodes as the fixed-size subsets. Operating in smart mode, the BDMD can be driven by another part of the recognition system to selectively scan an input pattern. Among the capabilities of the BDMD is its ability to zoom in on a pattern feature of particular interest. Only the relatively few connections and associated computations required for recognizing single features need to be implemented in the PR network.< >
doi_str_mv 10.1109/IJCNN.1992.227340
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_227340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>227340</ieee_id><sourcerecordid>227340</sourcerecordid><originalsourceid>FETCH-ieee_primary_2273403</originalsourceid><addsrcrecordid>eNp9zr0KAjEQBOCACP7dA2iVF_Dc-_dKEUUtrMRWwrHR1TM5NlHx7T3Q2mm-YqYYIcYRhFEE5Wy7W-73YVSWcRjHRZJCRwygmEMCWVZCTwTOXaFNmkGe5X1xXBiJWlNFaLw0-GBVt_iX5ZtUXF3IY-UfjFJbloyVPRvyZI20WrpGeWr3LR7ZSDJPxaSMdyPR1ap2GPwcisl6dVhupoSIp4bprvh9-j5M_pYfeMhBjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient neural network architecture for recognition of spatial pattern invariants</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Healy, M.J. ; Caudell, T.P.</creator><creatorcontrib>Healy, M.J. ; Caudell, T.P.</creatorcontrib><description>The authors describe a neural architecture for efficient recognition of invariant features placed arbitrarily in patterns of data. The architecture provides versatility in invariant selection with minimal computation and storage requirements. Operating in dumb mode, the architecture, called the big, dumb mass detector (BDMD), autonomously extracts fixed-size subsets of pattern components based upon total activation in the receptive fields of detector nodes. The BDMD sends these subset patterns to a pattern recognition neural network (PR network, an ART system) whose input field has exactly as many nodes as the fixed-size subsets. Operating in smart mode, the BDMD can be driven by another part of the recognition system to selectively scan an input pattern. Among the capabilities of the BDMD is its ability to zoom in on a pattern feature of particular interest. Only the relatively few connections and associated computations required for recognizing single features need to be implemented in the PR network.&lt; &gt;</description><identifier>ISBN: 0780305590</identifier><identifier>ISBN: 9780780305595</identifier><identifier>DOI: 10.1109/IJCNN.1992.227340</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer networks ; Data mining ; Detectors ; Feature extraction ; Image recognition ; Infrared image sensors ; Neural networks ; Pattern recognition ; Subspace constraints</subject><ispartof>[Proceedings 1992] IJCNN International Joint Conference on Neural Networks, 1992, Vol.4, p.208-213 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/227340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/227340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Healy, M.J.</creatorcontrib><creatorcontrib>Caudell, T.P.</creatorcontrib><title>An efficient neural network architecture for recognition of spatial pattern invariants</title><title>[Proceedings 1992] IJCNN International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>The authors describe a neural architecture for efficient recognition of invariant features placed arbitrarily in patterns of data. The architecture provides versatility in invariant selection with minimal computation and storage requirements. Operating in dumb mode, the architecture, called the big, dumb mass detector (BDMD), autonomously extracts fixed-size subsets of pattern components based upon total activation in the receptive fields of detector nodes. The BDMD sends these subset patterns to a pattern recognition neural network (PR network, an ART system) whose input field has exactly as many nodes as the fixed-size subsets. Operating in smart mode, the BDMD can be driven by another part of the recognition system to selectively scan an input pattern. Among the capabilities of the BDMD is its ability to zoom in on a pattern feature of particular interest. Only the relatively few connections and associated computations required for recognizing single features need to be implemented in the PR network.&lt; &gt;</description><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Data mining</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Image recognition</subject><subject>Infrared image sensors</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Subspace constraints</subject><isbn>0780305590</isbn><isbn>9780780305595</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zr0KAjEQBOCACP7dA2iVF_Dc-_dKEUUtrMRWwrHR1TM5NlHx7T3Q2mm-YqYYIcYRhFEE5Wy7W-73YVSWcRjHRZJCRwygmEMCWVZCTwTOXaFNmkGe5X1xXBiJWlNFaLw0-GBVt_iX5ZtUXF3IY-UfjFJbloyVPRvyZI20WrpGeWr3LR7ZSDJPxaSMdyPR1ap2GPwcisl6dVhupoSIp4bprvh9-j5M_pYfeMhBjw</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Healy, M.J.</creator><creator>Caudell, T.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>An efficient neural network architecture for recognition of spatial pattern invariants</title><author>Healy, M.J. ; Caudell, T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_2273403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Data mining</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Image recognition</topic><topic>Infrared image sensors</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Subspace constraints</topic><toplevel>online_resources</toplevel><creatorcontrib>Healy, M.J.</creatorcontrib><creatorcontrib>Caudell, T.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Healy, M.J.</au><au>Caudell, T.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient neural network architecture for recognition of spatial pattern invariants</atitle><btitle>[Proceedings 1992] IJCNN International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>1992</date><risdate>1992</risdate><volume>4</volume><spage>208</spage><epage>213 vol.4</epage><pages>208-213 vol.4</pages><isbn>0780305590</isbn><isbn>9780780305595</isbn><abstract>The authors describe a neural architecture for efficient recognition of invariant features placed arbitrarily in patterns of data. The architecture provides versatility in invariant selection with minimal computation and storage requirements. Operating in dumb mode, the architecture, called the big, dumb mass detector (BDMD), autonomously extracts fixed-size subsets of pattern components based upon total activation in the receptive fields of detector nodes. The BDMD sends these subset patterns to a pattern recognition neural network (PR network, an ART system) whose input field has exactly as many nodes as the fixed-size subsets. Operating in smart mode, the BDMD can be driven by another part of the recognition system to selectively scan an input pattern. Among the capabilities of the BDMD is its ability to zoom in on a pattern feature of particular interest. Only the relatively few connections and associated computations required for recognizing single features need to be implemented in the PR network.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1992.227340</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780305590
ispartof [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, 1992, Vol.4, p.208-213 vol.4
issn
language eng
recordid cdi_ieee_primary_227340
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer architecture
Computer networks
Data mining
Detectors
Feature extraction
Image recognition
Infrared image sensors
Neural networks
Pattern recognition
Subspace constraints
title An efficient neural network architecture for recognition of spatial pattern invariants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20neural%20network%20architecture%20for%20recognition%20of%20spatial%20pattern%20invariants&rft.btitle=%5BProceedings%201992%5D%20IJCNN%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Healy,%20M.J.&rft.date=1992&rft.volume=4&rft.spage=208&rft.epage=213%20vol.4&rft.pages=208-213%20vol.4&rft.isbn=0780305590&rft.isbn_list=9780780305595&rft_id=info:doi/10.1109/IJCNN.1992.227340&rft_dat=%3Cieee_6IE%3E227340%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=227340&rfr_iscdi=true